

GENERATOR UTG2025

MIE0352

Przedmowa

Drogi użytkowniku:

Dziękujemy za wybranie tego zupełnie nowego produktu firmy Uni - Trend. Aby móc użytkować przyrząd bezpiecznie i prawidłowo, przeczytaj proszę dokładnie tę instrukcję obsługi, zwracając szczególną uwagę na część dotyczącą bezpieczeństwa użytkowania.

Po przeczytanie niniejszej instrukcji obsługi, zalecamy przechowywanie jej w specjalnie wyznaczonym miejscu, najlepiej w pobliżu urządzenia, dla łatwego wglądu.

Spis treści

Rozdział 1 Informacje o bezpiecznym użytkowaniu	1
Terminy i symbole dotyczące bezpieczeństwa	. 1
Podstawowe przepisy bezpieczeństwa	2
Rozdział 2 Wprowadzenie	4
Główne cechy	. 5
Panel przedni	. 5
Panel tylny	10
Ekran powitalny	12
Rozdział 3 Pierwsze uruchomienie	16
Ogólne sprawdzenie przyrządu	16
Sprawdzenie czy nie ma uszkodzen spowodowanych transportem	16
Sprawdzenie wyposażenia	16
Pozycje rączki do przenoszenia	17
Podstawowa obsługa generatora	10
wprowadzanie wartości częstoli wości	10
Wprowadzanie wartości affortu DC	19
Vyprowadzanie wantości olisetu DC	20
Zadawanie wspołczynnika wypernienia	21
Zadawanie szerokosci impulsu	21
Zauawalile waliosol napięcia DC	23
Wprowadzanie parametrów przebiegu szumowego	24
Pomiar częstotliwości	24
System nomocy	26
	20
Rozdział 4 Pomiary zaawansowane	27
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM)	27 27
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM)	27 27 36
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM)	27 27 36 44
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK)	27 27 36 44 51
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK)	27 36 44 51 57
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK)	27 36 44 51 57 64
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM)	27 36 44 51 57 64 .71
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM)	27 36 44 51 57 64 .71
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM)	27 36 44 51 57 64 .71 79
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem	27 36 44 51 57 64 .71 79 79
Rozdział 4 Pomiary zaawansowane	27 36 44 51 57 64 .71 79 80
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania	.27 27 36 44 51 57 64 .71 79 80 81
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór czasu przemiatania	.27 36 44 51 57 64 .71 79 80 81 82
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór czasu przemiatania Wybór źródła wyzwalania	27 36 44 51 57 64 .71 79 80 81 82 82
Rozdział 4 Pomiary zaawansowane	27 27 36 44 51 57 64 .71 79 80 81 82 82 83 83
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór czasu przemiatania Wybór źródła wyzwalania Wyjściowy sygnał wyzwalania Zbocza wyzwalania	27 36 44 51 57 64 .71 79 80 81 82 83 84
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór czasu przemiatania Wybór źródła wyzwalania Wyjściowy sygnał wyzwalania Zbocza wyzwalania Przykład ogólny	27 36 44 51 57 64 .71 79 80 81 82 82 83 84 84
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja szerokości impulsu (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór źródła wyzwalania Wyjściowy sygnał wyzwalania Zbocza wyzwalania Przykład ogólny	27 36 44 51 57 64 .71 79 80 81 82 82 83 84 84 84
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja fazy sygnałem cyfrowym (PSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór czasu przemiatania Wybór źródła wyzwalania Wyjściowy sygnał wyzwalania Zbocza wyzwalania Przykład ogólny Generacja przebiegów typu burst	27 36 44 51 57 64 .71 79 80 81 82 83 84 84 88 84 88
Rozdział 4 Pomiary zaawansowane	27 36 44 51 57 64 79 80 81 82 83 84 84 88 88 88
Rozdział 4 Pomiary zaawansowane	27 27 36 44 51 57 64 .71 79 80 81 82 83 84 84 88 89 92
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja szysynałem cyfrowym (PSK) Modulacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór źródła wyzwalania Wybór źródła wyzwalania Zbocza wyzwalania Przykład ogólny Generacja przebiegów typu burst Typy ciągów impulsów burst Cyciąci myski w burst Cyciąci myski w burst Cyciąci myski w burst Okres ciagu impulsków	27 27 36 44 51 57 64 .71 79 79 80 81 82 83 84 88 89 92 92
Rozdział 4 Pomiary zaawansowane	27 36 44 51 57 64 .71 79 80 81 82 83 84 88 88 89 92 92 92 92
Rozdział 4 Pomiary zaawansowane Modulacja amplitudy (AM) Modulacja częstotliwości (FM) Modulacja fazy (PM) Modulacja kluczowanie amplitudy (ASK) Modulacja kluczowanie częstotliwości (FSK) Modulacja szerokości impulsu (PWM) Generacja przebiegów z przemiataniem Wybór funkcji przemiatania Ustalanie częstotliwości startu stopu Rodzaje przemiatania Wybór źródła wyzwalania Zbocza wyzwalania Przykład ogólny Generacja przebiegów typu burst Myjbór przebiegów typu burst Cłagów impulsów burst Space cjagów ipulsów burst Czasu przebiegów typu burst Zbocza wyzwalania Wybór przebiegów typu burst Okres cjagu impulsów burst Colar przebiegów typu burst Mybór przebiegów typu burst Mybór przebiegów typu burst Colar przebiegów typu burst Colar przebiegów typu burst Mybór przebiegów typu burst Mybór czasu przemiatania Wybór czasu przemiatania Wybór czasu przemiatania Wybór czasu przemiatania Wybór czasu przebiegów typu burst <	27 27 36 44 51 57 64 57 64 79 80 81 82 83 84 88 89 92 93 93 93

Sygnał wyjściowy wyzwalania Zbocza wyzwalania Przykład ogólny	
Przebiegi arbitralne Aktywacja funkcji przebiegów arbitralnych	
Tryb pracy "Punkt po punkcie	101
Lista gotowych przebiegów arbitralnych	101
Tworzenie i edycja przebiegów arbitralnych	
Rozdział 5 Rozwiązywanie problemów	
Brak wyświetlania (czarny ekran)	
Brak przebiegów wyjściowych	103
Błąd dysku	104
Rozdział 6 Serwis i pomoc	
Aktualizacja oprogramowania	
Dodatek Á Ustawienia fabryczne	
Dodatek B Specvfikacia Techniczna	
Dodatek C Wyposażenie	
Dodatek D Mycie i konserwacja	

Rozdział 1 Informacje dotyczące bezpieczeństwa

Symbole na produkcie 1

W niniejszej instrukcji mogą pojawić się następujące terminy: **Ostrzeżenie:** Warunki i zachowania mogące zagrażać życiu.

Uwaga: Warunki i zachowania mogące spowodować uszkodzenie produktu lub urządzeń testowanych.

Na produkcie mogą pojawić się następujące terminy:

Niebezpieczeństwo: Wykonanie tego działania, może spowodować natychmiastowe niebezpieczeństwo dla operatora. Ostrzeżenie: Ta operacja może spowodować niebezpieczeństwo dla operatora.

Uwaga: Ta operacja może spowodować uszkodzenie produktu i urządzeń podłączonych do produktu.

Na przyrządzie mogą znajdować się następujące symbole:

Prąd zmienny
Pomiarowy zacisk uziemienia
Uziemienie chassis
Przycisk włączania/wyłączania
Ryzyko porażenia prądem elektrycznym
Uwaga

Zacisk zabezpieczający

CE jest zastrzeżonym znakiem towarowym wspólnoty europejskiej

SA jest zastrzeżonym znakiem towarowym firmy CSA international

C-tick jest zastrzeżonym znakiem towarowym firmy Spectrum Management Agencji Zarządzania w Australii. W Stanach Zjednoczonych zgodna z australijską normą EMC. Przepisy ramowe na warunkach ustawy o komunikacji audio z 1992 r.

Zawiera jedną lub więcej z sześciu substancji niebezpiecznych, powyżej wartości maksymalnego stężenia MCV oraz 40 zabezpieczeń ochrony środowiska EPUP

Podstawowe przepisy bezpieczeństwa

Niniejszy produkt ściśle odpowiada wymaganiom normom bezpieczeństwa dla elektronicznego przyrządu pomiarowego: GB4793 IEC 61010-1 dotyczących projektowania i produkcji.

Przeczytaj ze zrozumieniem uwagi dotyczące bezpieczeństwa użytkowania.

Aby uniknąć obrażeń ciała i zapobiec uszkodzeniu przyrządu oraz możliwych zagrożeń podczas pracy, należy używać tego produktu zgodnie z obowiązującymi przepisami bezpieczeństwa.

- Używaj właściwego zasilania: Do tego produktu należy używać wyłącznie dedykowanego przewodu zasilającego, przeznaczonego dla lokalnego regionu lub kraju.
- Prawidłowe załączenie: Nie załączać przyrządu, gdy sonda lub przewód testowy jest podłączony do źródła napięcia.
- Uziemienie przyrządu: Ten przyrząd jest uziemiony przez przewód uziemienia zasilacza. Aby uniknąć porażenia prądem, przewody uziemiające muszą być podłączone do ziemi. Przed rozpoczęciem prac upewnij się, że produkt jest prawidłowo uziemiony.
- Prawidłowe podłączenie sondy pomiarowej: Upewnij się, że uziemienie sondy i potencjał uziemienia są prawidłowe. Nie podłączaj przewodu uziemiającego do wysokiego napięcia.
- Sprawdź wszystkie wartości znamionowe zacisków: Aby uniknąć pożaru lub uszkodzenia przyrządu, sprawdź wszystkie wartości znamionowe i oznaczenia na produkcie. Szczegółowe informacje na temat wartości znamionowych znajdują się również w instrukcji produktu.

- Nie otwieraj pokrywy obudowy ani panelu przedniego podczas pracy.
- · Używaj tylko bezpieczników o wartościach podanych w specyfikacji technicznej.
- Unikaj obwodów nieosłoniętych: Nie dotykaj odsłoniętych złączy i komponentów po podłączeniu zasilania.
- Nie używaj produktu, jeśli podejrzewasz, że jest wadliwy i skontaktuj się z autoryzowanym personelem serwisu UNI-T w celu sprawdzenia. Wszelkie czynności konserwacyjne, regulacyjne lub wymiany części, muszą być wykonywane przez personel autoryzowany przez UNI-T.
- Zachowaj prawidłową wentylację.
- Nie używaj produktu w warunkach dużej wilgotności.
- Nie pracuj w środowisku łatwopalnym i wybuchowym.
- Utrzymuj powierzchnie przyrządu w należytej czystości.

Rozdział 2 Wprowadzenie

Zakupili Państwo ekonomiczny, wydajny, wielofunkcyjny dwukanałowy generator przebiegów, wykorzystujący technologię bezpośredniej syntezy cyfrowej (DDS), do wytwarzania dokładnych i stabilnych przebiegów, o rozdzielczości zaledwie 1 μHz. Generator może generować dokładne, stabilne, o niskiej zawartości zniekształceń sygnały wyjściowe, mogące dostarczać przebiegi o wysokiej częstotliwości. Wygodny interfejs UTG2000A, doskonałe parametry techniczne i przyjazny dla użytkownika graficzny styl wyświetlania, mogą pomóc użytkownikom w szybkim wykonywaniu zadań.

Główne cechy

- Wyjście przebiegu sinusoidalnego o częstotliwości 60MHz (lub 25Mhz), przy rozdzielczość pełnego zakresu częstotliwości 1µHz
- Przebieg impulsowy o częstotliwości 25 MHz (lub 5MHz), czas narastania i opadania oraz współczynnik wypełnienie są regulowane
- · Częstotliwość próbkowania 250 Msa/s (lub 125 Msa/s)a rozdzielczość pionowa 14 bitów
- 6-bitowy licznik częstotliwości o wysokiej precyzji, kompatybilny z poziomem TTL.
- Dwa całkowicie niezależne skonfigurowane standardowo kanały
- 1M (lub 8K) nieulotnej pamięci do przechowywania cyfrowych przebiegów arbitralnych w ilości 48
- Rodzaje modulacji : AM, FM, PM, ASK, FSK, PSK, PWM
- Pełne oprogramowanie PC
- 4,3-calowy wyświetlacz ciekłokrystaliczny kolorowy TFT o wysokiej rozdzielczości

- Standardowy interfejs konfiguracyjny USB Host, USB Device, LAN (opcjonalnie).
- Dwa kanały mogące pracować oddzielnie lub jednocześnie, z wewnętrzną / zewnętrzną modulacją oraz z wewnętrznym, zewnętrznym i manualnym sposobem wyzwalania
- Posiada funkcję przemiatania oraz burst
- · Wyposażony w łatwe w użyciu pokrętło wielofunkcyjne i klawiaturę numeryczna

Uwaga: UTG2025A nie posiada portu LAN.

Panele i Przyciski

Panel przedni

UTG2000A zapewnia użytkownikom prosty, intuicyjny i łatwy w obsłudze panel przedni. Panel przedni pokazano na rysunku 2-1

Instrukcja obsługi

Rys. 2-1

1. Port USB

Przyrząd współpracuje z urządzeniem USB FAT 16 lub FAT 32 o maksymalnej pojemności 32GB. Port służy do transmisji danych dowolnych przebiegów, do ich zapisu lub odczytu na przyrządzie lub na dysku. Port USB służy również do przeprowadzania aktualizacji oprogramowania, tak aby zawsze korzystać z najnowszej jego wersji.

2. Włącznik/wyłącznik

Podłącz przyrząd do sieci o tych parametrach. Wyłącznik główny znajdujący sie na tylnym panelu ustaw w pozycji "I". Naciśnij ten przycisk aby załączyć przyrząd. Na wyświetlaczu pojawi sie obraz startowy. Aby wyłączyć przyrząd naciśnij i przytrzymaj przycisk włącznika, aby wyłączyć przyrząd.

Uwaga: Przycisk On/Off jest aktywny wyłącznie po podłączeniu przewodu zasilającego do sieci oraz gdy wyłącznik główny jest w pozycji On.

3. Ekran przyrządu

Generator posiada 4,3" wysokiej rozdzielczości wyświetlacz LCD TFT, rozróżniający status wyjściowy przyrządu, menu i podający inne ważne informacje dotyczący kanałów CH1 i CH2 przy użyciu różnych kolorów, które znacznie ułatwiają pracę człowieka i czynią ją bardziej efektywną.

4. Przyciski menu operacyjnego

Aby wybrać lub sprawdzić opcję, pod wyświetlanymi na dole ekranu prostokątami, znajdują się korespondujące z nimi przyciski menu operacyjnego. Przyciski te mogą współpracować z klawiaturą numeryczną lub z pokrętłem wielofunkcyjnym przy zadawaniu różnych parametrów.

5. Przycisk menu

Naciskaj, aby wyświetlić menu funkcyjne: Wave (przebig), Mod (modulacja), Sweep (przemiatanie), Burst (porcje impulsów).

6. Przyciski menu funkcyjnego

Naciskając przyciski korespondujące z prostokątami menu (z prawe strony ekranu), wybierzesz potrzebną funkcję

7. Przycisk Utility

Naciskając ten przycisk możesz załączyć następujące funkcje: CH1 Setting (nastawy), CH2, Setting (nastawy), I/O lub Freq Meter (pomiar częstotliwości), System. Podświetlone zostanie menu (tło w kolorze szarym i znaki w czystej bieli) na dole ekranu wyświetlacza. Pomoże ci to dowiedzieć się więcej, z czym związana są poszczególne opcje menu. Naciśnięcie dolnych\ przycisków programowych odpowiadających "prostokątnym" opcjom, pomoże wprowadzić określone ustawienia lub informacje. Na przykład w celu ustawienia kanałów: ustaw impedancję wyjściową w zakresie 1 ~ 10k lub wysoką impedancję, określ limit napięcia lub skonfiguruj wyjście synchronizacji, język, włączane parametry, podświetlenie, DHCP (protokół konfiguracji dynamicznej hostu) kompatybilny interfejs, zapis lub przywoływanie, wyświetl informacje o systemie lub listę tematów pomocy itp.

8. Klawiatura numeryczna

Służy do wprowadzania wartości parametrów 0~9, kropki dziesiętnej, znaków + -. Kropka dziesiętna pozwala na szybką zmianę jednostki. Przyciski strzałkowe pozwalają na szybkie wybieranie cyfr do edycji.

9. Przycisk wyzwalania ręcznego

Przycisk jest aktywny gdy jest podświetlony.

10. Gniazdo wyjściowe impulsów synchronizacji Sync

Wysyłane są impulsy synchronizacji dla wszystkich standardowych funkcji (oprócz DC i przebiegów szumowych).

11. Pokrętło wielofunkcyjne

Służy do edycji nastawianych parametrów lub pełni funkcję przycisków kierunkowych. Po naciśnięciu, edytowana wartość jest zatwierdzana.

12. Przyciski kierunkowe

Służą do szybkiej edycji wartości parametrów lub przesuwanie kursora podczas używania pokrętła wielofunkcyjnego.

13.CH1

Służy do szybkiego wyświetlania bieżącego kanału na ekranie. Gdy w lewym górnym rogu ekranu pojawi się znak CH1, oznacza to, że ten kanał został wybrany i że wszystkie wyświetlane parametry mogą teraz być ustawiane. Jeśli CH1 jest kanałem bieżącym, to naciskając przycisk CH1, załączasz/wyłączasz wyjście sygnału generatora, następnie naciskając przycisk Utility, możesz dokonać potrzebnych nastaw kanału CH1. Gdy wyjście kanału jest aktywne, przycisk będzie podświetlony a z prawej strony ekranu pojawią się funkcje do wyboru (Wave, Mod, Sweep, Burst).

14.CH2

Służy do szybkiego wyświetlania bieżącego kanału na ekranie. Gdy u góry ekranu pojawi się znak CH2, oznacza to, że ten kanał został wybrany i że wszystkie wyświetlane parametry mogą teraz być ustawiane. Jeśli CH2 jest kanałem bieżącym, to naciskając przycisk CH2, załączasz/wyłączasz wyjście sygnału generatora, następnie naciskając przycisk Utility, możesz dokonać potrzebnych nastaw kanału CH2. Gdy wyjście kanału jest aktywne, przycisk będzie podświetlony a z prawej strony ekranu pojawią się funkcje do wyboru (Wave, Mod, Sweep, Burst).

Panel tylny (rys 2-2)

Rys. 2-2

1. Gniazdo wejściowe modulacji analogowej

Gdy wybrana jest opcja modulacji zewnętrznej, gniazdo to jest używane dla modulacji AM, FM, PM lub PWM w celu doprowadzenia sygnału modulacji analogowej z dodatkowego modulatora. Głębokość modulacji lub wartość dewiacji, jest kontrolowana napięciem +-5V doprowadzonym do tego gniazda.

2. Gniazdo wejściowe modulacji cyfrowej

Gdy wybrana jest opcja modulacji zewnętrznej, gniazdo to jest używane dla modulacji ASK, FSK lub PSK w celu doprowadzenia sygnału modulacji cyfrowej z dodatkowego modulatora. Amplituda, częstotliwość oraz faza jest kontrolowana poziomem sygnału doprowadzonego do tego gniazda. Dla trybu Sweep i Burst, gdy wybrana jest opcja modulacji zewnętrznej, gniazdo to jest używane do sprawdzenia polaryzacji impulsów TTL akceptowalnej dla funkcji Sweep i Burst N-cykli. Gdy Burst jest bramkowane, tym gniazdem doprowadzisz sygnał bramkujący. Gdy funkcja częstotliwościomierza jest załączona, tym gniazdem doprowadzisz sygnał o poziomie TTL, a dla funkcji Sweep i Burst jest gniazdem wyjściowym sygnału wyzwalania. Gdy załączona jest opcja źródła wyzwalania zewnętrznego lista parametrów zniknie ponieważ tego złącza nie można jednocześnie stosować jako wejście i wyjście.

3. Gniazdo LAN

Użyj do zdalnego sterowania generatora.

4. Port USB

Służy do połączenia przewodem USB generatora z komputerem w celu przeprowadzania aktualizacji oprogramowania.

5. Gniazdo wejściowe sygnału 10MHz

Gdy wybrana jest opcja sygnału zegarowego zewnętrznego, tym gniazdem doprowadź sygnał. Gdy zależy Ci na synchronizacji kilku generatorów lub synchronizacji Twojego generatora sygnałem 10MHz, użyj tego gniazda.

6. Gniazdo wyjściowe sygnału 10MHz

Gdy wybrana jest opcja sygnału zegarowego wewnętrznego, tym gniazdem wyprowadź sygnał, którym możesz synchronizować pracę kilku generatorów arbitralnych.

7. Wentylacja

Nie zasłaniaj okien wentylacyjnych

8. Bezpiecznik

Generator zabezpieczony jest bezpiecznikiem 2AT 250VAC.

9. Wyłącznik główny

Aby załączyć ustaw w pozycji "l".

10.Gniazdo zasilania

Zasilanie generatora: AC, 100~240V, 45~440Hz.

Ekran powitalny (patrz rys. 2-3)

Rys. 2-3

Opis szczegółowy:

Informacje o CH1:

Gdy u góry na ekranie w podświetlonym na czerwono prostokącie pojawi się podświetlony "CH1", jest to Informacja, że kanał CH1 jest włączony i parametry CH1 są gotowe do skonfigurowania. Konfiguracja kanału CH1 jest niedozwolona, jeśli "CH1" nie jest podświetlone. Aby włączyć pozostałe informacje o kanale, naciśnij przycisk CH1. Na pasku wyświetlania obok "CH1", pojawi się ikona "Limit ", która reprezentuje limitowanie amplitudy sygnału wyjściowego (gdy w kolorze szarym Off, gdy w kolorze białym On (limit załączony). Pod ikoną Limit znajduje się ikona nastawialnej wartości impedancji wyjściowej "HighZ" (domyślnie to 50 om). Bardziej na prawo znajduje się ikona wybranego kształtu generowanej fali lub rodzaju modulacji albo ikona "OFF", gdy gniazdo wyjściowe nie jest załączone.

• Informacje o CH2:

Gdy u góry na ekranie w podświetlonym na niebiesko prostokącie pojawi się podświetlony "CH2", jest to Informacja, że kanał CH2 jest włączony i parametry CH2 są gotowe do skonfigurowania. Konfiguracja kanału CH2 jest niedozwolona, jeśli "CH2" nie jest podświetlone. Aby włączyć pozostałe informacje o kanale, naciśnij przycisk CH2. Na pasku wyświetlania obok "CH2", pojawi się ikona "Limit ", która reprezentuje limitowanie amplitudy sygnału wyjściowego (gdy w kolorze szarym Off, gdy w kolorze białym On (limit załączony). Pod ikoną Limit znajduje się ikona nastawialnej wartości impedancji wyjściowej "HighZ" (domyślnie to 50 om). Bardziej na prawo znajduje się ikona wybranego kształtu generowanej fali lub rodzaju modulacji albo ikona "OFF", gdy gniazdo wyjściowe nie jest załączone.

• Informacje o przyciskach funkcyjnych:

Prostokąty z prawej strony ekranu korespondują z tymi na dole ekranu a z nimi umieszczone na dole lub z boku miękkie przyciski funkcyjne. Kolor podświetlania ikon będzie korespondował z bieżącym wybranym kanałem.

1. Etykiety po prawej stronie ekranu:

Etykieta została wybrana, jeśli jest podświetlona. Przyciski programowe i etykiety na dole ekranu, wyświetlą opcje związane z wybraną etykietą. (Uwaga: jeśli aktualnie wybrana etykieta zawiera więcej niż jeden podkatalog, wyświetlane opcje na dole ekranu niekoniecznie będą podkatalogami wybranej etykiety. (Na przykład, jeśli etykieta Type jest podświetlona, pojawiające się na dole ekranu etykiety typów przebiegów, są podkatalogami dla Type. Jeśli naciśniesz przycisk Menu etykiety boczne zostaną wyróżnione, jednak etykiety na dole ekranu pozostaną niezmienione, co nie znaczy, że są podkatalogami Wave, ponieważ podkatalogami dla Wave są Type i Params.) Gdy etykieta po prawej stronie zawiera więcej więcej niż sześć opcji (czyli więcej niż 6 etykiet przycisków programowych na dole ekranu, ikona "strzałka" pojawi się w dolnym róg etykiety), jeśli chcesz zobaczyć więcej opcji naciśnij ponownie korespondujący przycisk, aby przejdź do następnego ekranu.

2. Etykiety na dole ekranu:

Kiedy etykiety należą do podkatalogu Type, wybrane etykiety po prawej stronie ekranu, będą podświetlone. Jeśli dostępne etykiety podkatalogu Params po prawej stronie ekranu (lub podkatalogi jednego z kanałów CH1 lub CH2, lub Freg Meter lub System po naciśnięciu przycisku Utility), znajdziesz ich opcje odpowiadające wybranym parametrom jeden po drugim w liście parametrów, oznaczone krawędziami kolorem zgodnym z kolorem kanału i (czcionki na liście wybranych parametrów zmieniaja kolor na biały) jeśli wybrano pod etykietę; Jeśli naciśniesz przyciski programowe lub pokrętło wielofunkcyjne to w tej chwili etykiety zostaną podświetlone wskazując, że parametr, który odpowiada etykiecie jest gotowy do edycji. Użyj pokrętła wielofunkcyjnego jeśli chcesz zmodyfikować parametr, naciśnij aby potwierdzić wybór i wyść z wdycji po jej zakończeniu. Jeśli pod etykieta została "wybrana", ale jeszcze nie jest w stanie edycji, obracając pokrętło wielofunkcyjne lub naciskając przyciski strzałkowe można przełączać między różnymi etykietami (będącymi w liście parametrów); Aby zmodyfikować parametr za pomocą cyfr lub wybrać lub edytować jednostki, możesz wprowadź cyfry bezpośrednio za pomocą klawiatury numerycznej (przycisk strzałkowy w lewo może być użyty do usunięcia bieżącej cyfry) lub wybrać na dole ekranu, naciskając korespondujący przycisk. W celu zatwierdzenia i wyjścia z edycji naciśnij pokrętło wielofunkcyjne.

• Lista parametrów przebiegów:

Wszystkie parametry związane z bieżącym przebiegiem zostaną wyświetlone na ekranie. Jeśli jeden z parametrów zmieni kolor na biały, oznacza to parametr można edytować za pomocą klawiszy funkcyjnych, klawiatury numerycznej, przycisków strzałkowych i pokrętła wielofunkcyjnego. Jeśli obecna postać ma taki sam kolor jak bieżący kanał, oznacza to, że znak jest gotowy do edycji za pomocą klawiatury numerycznej, przycisków strzałkowych lub pokrętła wielofunkcyjnego.

• Strefa wyświetlania przebiegu:

Aby wyświetlić przebieg z bieżącymi ustawieniami kanału (możesz określić, który kanał został wybrany poprzez sprawdzenie koloru lub w prostokącie informacyjnym CH 1 / CH2. Parametry po lewej stronie ekranu są powiązane z parametrami wybranego kształtu przebiegu). Uwaga: brak jest wyświetlania przebiegu podczas ustawień systemowych.

Rozdział 3 Pierwsze uruchomienie

Ogólne sprawdzenie przyrządu

Zaleca sie przeprowadzić sprawdzenie w następującej kolejności:

Sprawdzenie czy nie ma uszkodzeń spowodowanych transportem

Jeśli karton w który zapakowany jest przyrząd jest w kilku miejscach uszkodzony, należy niezwłocznie skontaktować sie z dystrybutorem UNI-T.

Jeśli przyrząd został uszkodzony w transporcie należy zachować oryginalne opakowanie i skontaktować sie z dystrybutorem UNI-T

Sprawdzenie wyposażenia

UTG2000A powinien posiadać wyposażenie: przewód zasilający, przewód USB, przewód BNC, przewód BNC z krokodylkami. W przypadku jakichkolwiek braków należy niezwłocznie skontaktować sie z dystrybutorem UNI-T.

Gdy przyrząd posiada wady

Jeśli przyrząd wygląda na uszkodzony, nie pracuje poprawnie lub nie przechodzi testu funkcjonalności, należy niezwłocznie skontaktować sie z dystrybutorem UNI-T.

Regulacja uchwytu do przenoszenia

Generator przebiegów serii UTG2000A został zaprojektowany z uchwytem do przenoszenia, który można dowolnie regulować. Aby wyregulować uchwyt do przenoszenia, przytrzymaj go z dwóch stron i wyciągnij na zewnątrz. Teraz możesz dostosować położenie uchwyty zgodnie z potrzebami. Zobacz rysunek 3-1:

Rys. 3-1

Generowanie podstawowych przebiegów

Zadawanie częstotliwości wyjściowej

Po włączeniu generator jest skonfigurowany domyślnie na przebieg sinusoidalny o amplitudzie 100 mVp-p, częstotliwości 1 kHz (na impedancji wyjściowej 50Ω). Żeby zmienić częstotliwość np. do 2,5 MHz, wykonaj kroki przedstawione poniżej:

- Naciskaj przyciski: Menu > Wave > Params > Freq lub przycisk programowy (jeśli po naciśnięciu przycisku programowego Params, etykieta Freq na dole ekranu nie wyświetla się, naciśnij przycisk Period aby przejść do następnego ekranu). Dopóki nie zmieniasz częstotliwość, ostatnio używana wartość częstotliwości jest aktualna dla nowej aplikacja. Aby zmodyfikować okres fali ponownie naciśnij przycisk programowy Freg, aby wybrać pomiędzy okresem a częstotliwością.
- 2. Wprowadź z klawiatury numerycznej liczbę 2.5.

3. Wybierz potrzebną jednostkę

Naciśnij przycisk korespondujący z potrzebną jednostką czyli MHz. Po wybraniu jednostki generator wygeneruje przebieg o wyświetlonej częstotliwości i parametrach widniejących na liście (jeśli wyjście zostało włączone). Uwaga: Możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych aby wygodnie zmieniać częstotliwość.

Zadawanie amplitudy wyjściowej

Po włączeniu generator będzie skonfigurowany domyślnie na przebieg sinusoidalny o amplitudzie 100 mVp-p (na impedancji wyjściowej 50om). Aby zmienić amplitudę np. na 300 mVpp, wykonaj kroki przedstawione poniżej:

- Naciskaj przyciski: Menu > Wave > Params > Amp . Dopóki nie zmienisz amplitudy, wcześniej nastawiona wartość amplitudy jest ważna dla nowa aplikacji. Naciskając przycisk programowy Amp, możesz szybko wybrać potrzebną jednostkę (Vpp, Vrms i dBm).
- 2. Wprowadź żądaną liczbę 300 za pomocą cyfr klawiatura numerycznej.

CH1	Limit 50Ω	∨ Сн	2 Limit 50Ω	Off	Туре
Freq Amp Offset	2.500,00 +300 0 mV	0,0 MHz	$\uparrow \land$		Params
Phase	0.00 °			<u> </u>	
			¥	\sim	
m∨pp	∨рр	m∨rms	Vrms	dBm	Cancel

3. Wybierz żądaną jednostkę

Naciśnij przycisk programowy aby wybrać potrzebną jednostkę. Po wybraniu jednostki generator wysyła przebieg o wyświetlonej amplitudzie (jeśli wyjście zostało włączone}. W tym przykładzie naciśnij klawisz programowy mVpp. Uwaga: Możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zmodyfikować amplitudę.

Zadawanie przesunięcia napięcia stałego (Offset DC)

Po włączeniu generator będzie skonfigurowany domyślnie na przebieg sinusoidalny o napięciu przesunięcia 0 V DC (na impedancji wyjściowej 50om). Aby zmienić przesunięcie napięcia stałego na 150 mV, wykonaj następujące kroki:

- Naciśnij przycisk Menu > Wave > Param > Qffset lub przycisk programowy (jeśli po naciśnięciu przycisku Params, nie pojawia się na dole ekranu etykieta Offset, naciśnij (trzeci od lewej) przycisk, aby przejść do następnego ekranu). Dopóki nie zmieniasz przesunięcia DC, jest aktualna wartość offsetu DC, zadana wcześniej. Naciśnij ponownie klawisz programowy Offset, a etykieta zmieni się na Low i High. Teraz oryginalny przebieg zdefiniowany przez amplitudę i przesunięcie prądu stałego, możesz edytować zmieniając wysoki poziomu (High) i niski poziomu (Low) co jest bardzo wygodne przy aplikacjach cyfrowych.
- 2. Wprowadź żądaną liczbę -150 mV za pomocą cyfr klawiatury numerycznej.

CH1	Limit 50Ω	\sim	:H2	Limit 50Ω	Off	Туре
Freq	2.500,00	0,0 MHz	z			
Amp	300 mVp	р		\frown		Params
Offset	-150			, /	\	
Phase	0.00 °		→	<u>k</u> /	7	
					\vee	
mV	V					Cancel

3. Wybierz żądaną jednostkę

Naciśnij przycisk programowy aby wybrać potrzebną jednostkę. Po wybraniu jednostki generator wysyła przebieg o wyświetlonej amplitudzie (jeśli wyjście zostało włączone}. W tym przykładzie naciśnij klawisz programowy mV. Uwaga: Możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zmodyfikować amplitudę.

Ustawianie przebiegu prostokątnego

Współczynnik wypełnienia przebiegu prostokątnego reprezentuje ilość czasu na cykl, w którym występuje wysoki poziom (załóżmy, że przebieg nie jest odwrócony). Po włączeniu domyślny współczynnik wypełnienia ustalono (Duty) na 50%. Współczynnik wypełnienia jest ograniczony do 20ns (lub 40ns) minimalną szerokością impulsu. Aby np. ustawić częstotliwość na 1 kHz, wzmocnienie na 1,5 Vpp, przesunięcie DC na 0 V i współczynnik wypełnienia na 70%, wykonaj kroki jak pokazano poniżej:

1. Naciskaj przyciski: Menu > Wave > Type > Square > Param. W celu ustawienia wymaganych parametrów, naciskaj korespondujące przyciski programowe, które odpowiadają edytowanym parametrom, a następnie wprowadzaj żądane wartość i ostatecznie wybierz żądane jednostki.

CH1	Limit 50Ω	СН	l 2 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			¥
Amp	1.500 Vp	р	\longleftrightarrow		Params
Offset	0 mV				
Phase	0.00 °				
DutyCycle	e 70				
%	10%	25%	50%	75%	Cancel

Uwaga: Możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych, aby dokonać potrzebnych nastaw.

Ustawianie przebiegu impulsowego

Współczynnik wypełnienia przebiegu impulsowego przedstawia czas od 50% progu zbocza narastającego do 50% progu zbocz opadającego (Załóżmy, że przebieg nie jest odwrócony). Możesz skonfigurować generator do generowania przebiegu impulsowego ze zmienną szerokością impulsu i czasem narastania/opadania zbocza. Po włączeniu domyślnie współczynnik wypełnienia wynosi 50% oraz czas narastania/opadania wynosi 1us. Aby np. ustawić okres na 2 ms, amplitudę na 1,5 Vpp, przesunięcie DC na 0 V, współczynnik wypełnienia na wartość (ograniczoną przez minimalną szerokość impulsu 20ns lub 40ns) 25%, czas narastania na 200µs, czas opadania na 200µs, wykonaj kroki:

1. Naciskaj przyciski: Menu > Wave > Type > Sguare > Params lub przycisk programowy (jeśli potrzebna etykieta nie jest podświetlona, naciśnij ponownie klawisz programowy Type). Następnie jeśli zachodzi potrzeba naciśnij przycisk programowy (pierwszy z lewej), aby przełączyć z częstotliwości na okres. Następnie wprowadź wartość okresu i wybierz żądaną jednostkę. Aby wprowadzić wartość współczynnika wypełnienia, można użyć przycisku programowego z gotową wartością 25% (na dole ekranu) lub możesz również wybrać liczbę 25 na klawiaturze numerycznej, aby zakończyć wprowadzanie naciśnij pokrętło wielofunkcyjne. Aby wprowadzić wartość czasu narastania naciśnij przycisk Rise (lub wybierz pokrętłem wielofunkcyjnym), a następnie wprowadź wartość 200 i wybierz jednostkę µs. Teraz naciśnij ponownie przyciski Param > Fail i powtórz wszystko jak dla (Rise).

CH1	imit 50Ω Л—	CH2	Limit 50Ω	Off	Туре
Period	2.000,000,0 1	ms			
Amp	1.500 Vpp	_	₩		Params
Offset	0 mV				
Phase	0.00 °		<u> </u>		
DutyCycle	25.00 %				
LeadEdge	200.000,0 µs				
TailEdge	200.000,0 µs				
Tail Edge					

Uwaga: Możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych, aby dokonać potrzebnych nastaw parametrów.

Ustawianie napięcia stałego DC

W rzeczywistości napięcie prądu stałego zmienia się w zależności od przesunięcia napięcia stałego Offset, co zostało omówione wcześniej. Modyfikując przesunięcie DC przeprowadzone wcześniej, zmieniliśmy wartość "domyślną" napięcia DC (Offset DC). Po pierwszym włączeniu zasilania napięcie offsetu wynosiło 0 V. Aby ustawić napięcie stałe na 3 V, wykonaj kroki jak niżej:

- 1. Naciskaj przyciski Menu > Wave > Param > Offset (jeśli etykieta Offset nie jest podświetlona po naciśnięciu Param, naciśnij przycisk Low) . Dopóki nie zmienisz wartości napięcia stałego DC (przesunięcie Offset), obowiązują wartości nastawione ostatnio.
- 2. Wprowadź cyfrę 3 za pomocą klawiatury numerycznej.

3. Wybierz potrzebną jednostkę

Naciśnij przycisk programowy odpowiadający potrzebnej jednostce czyli V. Po wybraniu jednostki, generator generuje przebieg z wyświetlonym przesunięciem DC (jeśli wyjście zostało włączone). Uwaga: Możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zmodyfikować przesunięcie DC.

Ustawianie przebiegu piłowego (Rampa)

Symetria reprezentuje ilość czasu na cykl, podczas którego rampa jest dodatnia. Po włączeniu zasilania symetria rampy wynosi domyślnie 100%. Aby skonfigurować przebieg trójkątny o częstotliwości ustawionej na 10kHz, amplitudzie 2 V, przesunięciu DC 0 V i współczynniku wypełnienia 50%, wykonaj kroki przedstawione poniżej:

Naciskaj przyciski: Menu>Wawe>Type>Ramp>Params (jeśli któraś etykieta nie jest podświetlona, naciśnij przycisk programowy ponownie, aby wybrać). Aby ustawić wymagane parametry, naciśnij odpowiedni przycisk programowy, a następnie wprowadź żądaną wartość i żądana jednostkę. Przy ustawianiu wartość symetrii, można nacisnąć klawisz programowy 50% do bezpośredniego wprowadzenia lub wybrać za liczbę 50 z klawiatury numerycznej a następnie nacisnąć przycisk% (pod etykietą %), aby zakończyć wprowadzanie.

CH1	Limit 50Ω	∨ Сн	2 Limit 50Ω	Off	Туре
Freq	10.000,0	00 kHz			
Amp	2.000 Vp	р	├	——————————————————————————————————————	Params
Offset	0 mV				
Phase	° 00.0				
Symmetry	/ 50 <mark>/</mark>				
%	0%	50%	75%	100%	Cancel

Uwaga: Do modyfikacji parametrów, możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych.

Ustawianie przebiegu szumowego

Standardowy szum Gaussowski w UTG2000A ma domyślnie amplitudę 100 mVpp i przesunięcie (offset) prądu stałego 0V. Domyślny przebieg szumowy zmienia się odpowiednio, do zmian wartości offsetu DC i amplitudy. Tylko amplituda i offset DC mogą być tu modyfikowane.

Aby ustawić standardowy szumu Guassiana o amplitudzie 300 mVpp i offsecie DC 1 V, wykonaj kroki przedstawione poniżej:

Naciskaj przyciski: Menu>Wawe>Type>Noise>Params (jeśli któraś etykieta nie jest podświetlona, naciśnij przycisk ponownie). Aby ustawić wymagane parametry, naciśnij odpowiedni przycisk programowy, a następnie wprowadź potrzebne wartości oraz wybierz jednostkę.

Uwaga: Do modyfikacji parametrów, możesz także użyć pokrętła wielofunkcyjnego i przycisków strzałkowych.

Pomiar częstotliwości

Generator może mierzyć częstotliwość oraz współczynnik wypełnienia sygnałów (od 100mHz ~ 200MHz) o poziomie zgodnym z TTL. Podczas pomiaru częstotliwości, sygnał zgodny z TTL jest wprowadzany przez zewnętrzne gniazdo modulacji cyfrowych lub gniazdo FSK Trig / CNT. Naciśnij przycisk Utility, a następnie przycisk Counter. Teraz częstotliwość, okres i współczynnik wypełnienia może być odczytanym z listy parametrów. Gdy brak jest sygnału wejściowego, poprzednio zmierzona wartość jest wyświetlana na liście parametrów. Wyświetlacz miernika częstotliwości odświeża się tylko wtedy, gdy do wejść przyrządu zostanie podany zgodny z poziomem TTL sygnał wejściowy.

Korzystanie z wbudowanego systemu pomocy

Wbudowany system pomocy oferowany przez generator zapewnia pomoc kontekstową dla każdego przycisku na panelu przednim lub przycisku programowego menu. Lista tematów pomocy pomaga również w niektórych operacjach przeprowadzanych przy użyciu panelu przedniego.

- Zobacz informacje pomocy dla klawisza funkcyjnego. Naciśnij i przytrzymaj dowolny przycisk, na przykład przycisku Menu. Jeśli informacja zawiera więcej niż jeden ekran, w etykiecie na dole pojawią się strzałki, które zmieniają kierunek podczas naciskania korespondujących z tymi etykietami przycisków. Dotyczy to również przypadków, gdy korzystamy pokrętła wielofunkcyjnego.
- 2. Wyświetl listę tematów pomocy
- 3. Naciskaj przyciski: Utility>System>System Help, aby sprawdzić listę dostępnych tematów pomocy. Uzyskaj pomoc na dowolnym przycisku. Naciśnij przycisk programowy OK, aby wyjść.
- 4. Zobacz informacje pomocy dla wyświetlanych wiadomości. Generator wyświetli wiadomość, gdy limit zostanie przekroczony lub dowolna konfiguracja jest nieprawidłowa. Wbudowany system pomocy oferuje dodatkowe informacje o ostatnich wiadomościach. Naciśnij Utility>System>System-Hlp, aby wyświetlić listę dostępnych tematów pomocy.

Uwaga:

Pomoc w języku lokalnym: Wbudowany system pomocy dostępny jest w prostym języku chińskim, tradycyjnym języku chińskim, oraz w językach niemieckim i angielskim. Wszystkie wiadomości, pomoc kontekstowa, informacje i tematy pomocy są wyświetlane w wybranym języku. Aby wybrać język lokalny, naciśnij przycisk Utility>System>Language, a następnie naciśnij korespondujący z potrzebą etykietą przycisk, aby wybrać żądany język (możesz też tu użyć pokrętła wielofunkcyjnego).

Rozdział 4 Aplikacje zaawansowane

Generacja przebiegów modulowanych

Modulacja amplitudy

Przy modulacji AM modulowany przebieg składa się z fali nośnej zmodulowanej falą modulacyjną. Amplituda fali nośnej zmienia się w zależności od zmieniającej się amplitudy fali modulującej. Oba kanały CH1 i CH2 generatora, mogą być modulowane niezależnie dowolnymi rodzajami modulacji.

Wybieranie AM

Naciśnij przyciski Menu>Mod>Type>AM, aby włączyć funkcję AM (jeśli etykieta Type nie jest podświetlona, naciśnij przycisk programowy Type ponownie, aby wybrać), przy włączonej AM, generator wyśle zmodulowany przebieg zgodnie z aktualnymi ustawieniami modulacji.

Wybór fali nośnej

Kształt fali nośnej AM może być: sinusoidalny, prostokątny, piłowy lub arbitralny (z wyjątkiem DC). Domyślnie jest to sinusoida. Po wybraniu AM naciśnij przycisk Carrier, aby uzyskać dostęp do wyboru kształtów fali nośnej.

CH1	Limit 50Ω	Nod	CH2	Limit 50Ω	Off	Туре
Freq	1.000,00	00,0 k	Hz			
Amp	100 mV∣	ор		n 8	n	Params
Offset	0 mV			. // //	ŮΛ.	
Phase	0.00 °			-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1111/1/~-	Return
				٧IJ٧	{{}	
				.)	۲'	
Sine	Square	Ra	mp	Pulse	Arb	
\sim		^	\sim	Л	\sim	

Ustawianie częstotliwości fali nośnej

Zakresy częstotliwości fali nośnych mogą być różne i zależą od ich kształtu. Domyślnie załączy się częstotliwość 1kHz dla wszystkich funkcji. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość							
	UTG2062A L Wartość minimalna Wartość maksymalna V		UTG2025A					
			Wartość minimalna	Wartość maksymalna				
Sinusoida	1uHz	60MHz	1uHz	25MHz				
Prostokąt	1uHz	25MHz	1uHz	5MHz				
Piła	1uHz	400MHz	1uHz	400kHz				
Impuls	500uHz	25MHz	500uHz	5MHz				
Arbitralny	1uHz	12MHz	1uHz	5MHz				

Aby ustawić częstotliwość nośną, wybierz najpierw falę nośną, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wybrać parametr lub naciśnij przyciski programowe Param>Freq, następnie wprowadź żądaną wartość częstotliwości i wybierz żądaną jednostkę.

Wybór źródła modulacji

Generator UTG2000A może wybrać wewnętrzne lub zewnętrzne źródło modulacji. Po włączeniu AM źródło modulacji domyślnie będzie wewnętrzne (Internal). Aby zmodyfikować parametr, najpierw włącz funkcję AM, a następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać source Internal lub External (wewnętrzne lub zewnętrzne).

CH1	Limit 50Ω	lod	CH2	Limit 50Ω	Off	Туре
Source	Internal					
Shape	Sine			n 8	a a a a a a a a a a a a a a a a a a a	Params
ModFreq	100.000,	000 Hz		_ "∧Űľ	Щ́Да	
Depth	100.00 %	6		-~\\}{}}}	1111/1//~	Carrier
				• {} }	∬ V V	
				- V	ų -	
AM	FM	РM		ASK	FSK	PSK

1. Wewnętrzne źródło modulacji

Po wybraniu źródła wewnętrznego, modulacyjny przebieg może być: sinusoidalny, prostokątny, piłowy, arbitralny i szumowy. Domyślnie jest to sinusoida. Więc po wybraniu AM, domyślnie sygnał modulujący ma kształt sinusoidy. Aby zmodyfikować parametry, najpierw włącz modulację AM, następnie obróć pokrętło wielofunkcyjne lub naciśnij przyciski programowe Params>ModWave, aby wybrać:

- Square (prostokąt): o współczynniku wypełnienia 50%
- UpRamp (piła): o symetrii 100%
- DownRamp (piła): o symetrii 0%
- Arb a(arbitralny): gdy wybrany jest przebieg arbitralny jako przebieg modulujący, kształt fali jest automatycznie próbkowany i ograniczony do 1 kpts.
- Noise (szum): biały szum Gaussowski

2. Zewnętrzne źródło modulacji

Po wybraniu zewnętrznego źródła modulacji, niektóre parametry znikną z listy, a fala nośna będzie modulowana przez przebieg zewnętrzny. Głębokość modulacji jest kontrolowana przez poziom sygnału ± 5V, obecny na zewnętrznym analogowym gnieździe modulacyjnym (Modulation In) na tylnym panelu. Na przykład, gdy głębokość modulacji na liście parametrów ustawiona jest na 100%, a do gniazda modulacyjnego podany zostanie poziom +5V z zewnętrznego źródła modulacji, amplituda wyjściowa AM wzrasta na maksymalna wartość; Amplituda wyjściowa AM spada do minimum, gdy poziom napięcia modulującego wyniesie -5V.

Ustawianie częstotliwości fali modulującej

Częstotliwość modulacji jest dostępna do ustawienia, kiedy wybierasz wewnętrzne źródło modulacji. Po wybraniu modulacji AM, domyślna częstotliwość modulacji wynosi 1kHz. Aby to zmienić, włącz modulację AM, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Param>ModWave>ModFreq. Teraz przy pomocy klawiatury numerycznej ustaw potrzebną częstotliwość w zakresie 2mHz ~ 50kHz, na końcu wybierz jednostkę. Jeśli wybrane zostało zewnętrznie źródło modulacji, modulujący przebieg i opcje częstotliwości nie są wyświetlane na liście parametrów. W tym przypadku fala nośna będzie modulowana przez zewnętrzny przebieg o częstotliwości w zakresie 0 Hz ~ 20 kHz.

Ustawianie głębokości modulacji

Głębokość modulacji jest wyrażona w procentach i reprezentuje zmianę amplitudy. Głębokość modulacji AM można ustawić w zakresie 0% ~ 120%, domyślnie głębokość modulacji ustawiona jest na 100%. Gdy głębokość modulacji wynosi 0% to amplituda na wyjściu równa się połowie ustawionej wartości amplitudy fali nośnej . Przy głębokości 100% amplituda wyjściowa zmienia się w zależności od przebiegu modulującego. Przy głębokości modulacji większej niż 100%, generator nie przekroczy wartości napięcia szczytowego na wyjściu ± 5 V (na obciążeniu50Ω). Aby zmodyfikować głębokości modulacji, najpierw włącz funkcję AM, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Pearam>Depth. Po wybraniu źródła zewnętrznego w przypadku AM, amplituda wyjściowa będzie kontrolowana przez poziom sygnału ± 5V obecny na zewnętrznym gnieździe wejściowym modulacji analogowej (wejście modulacji). Na przykład gdy głębokości modulacji na liście parametrów została ustawiona na 100% a poziom sygnału modulującego wynosi + 5 V, wyjście AM ma maksymalną amplitudę; przy -5 V, wyjście AM spadnie do minimalnej amplitudy.

Przykład

Przede wszystkim włącz tryb pracy generatora AM. Ustaw falę modulacyjną jako sinusoidalną o częstotliwości 200 Hz a źródło modulacji jako wewnętrzne. Następnie wybierz przebieg prostokątny o amplitudzie 200 mVpp i współczynniku wypełnienia 45% o częstotliwość 10 kHz jako fala nośna, na koniec ustaw głębokość modulacji na poziomie 80%, wykonaj następujące czynności:

1. Włącz funkcję AM

Naciskaj przyciski Menu>Mod>Type>AM (jeśli etykieta Type nie jest podświetlona, naciśnij ponownie przycisk programowy Type, aby wybrać) aby włączyć funkcję AM.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Source	Internal				Parame
Snape ModFreq	5ine 100.000,	000 Hz	. A 🖞		
Depth	100.00 %	0	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\ }\/\~	Carrier
			l I	ŅΨ	
AM	FM	PM	ASK	FSK	PSK

2. Ustaw parametry fali modulującej

Przy włączonej funkcji AM używaj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie AM, aby uzyskać ekran jak poniżej:

CH1	Limit 50Ω	Off	СН	2 Limit 50Ω	Off	Туре
Source	Internal					
Shape	Sine			n (1	Params
ModFreq	100.000,	000 H	Ιz	. 107	ΠΛ.	
Depth	100.00 %	6		-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 //~	Carrier
				٩Ų	Υ.	
Source	Shape	Mod	Freq	Depth		
Aby ustawić żądane parametry, naciskaj korespondujące przyciski, a następnie wprowadzaj żądane wartości i wybierz potrzebne jednostki.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Source	Internal				
Shape	Sine		ስ	6	Params
ModFreq	200.000,	000 Hz	A	, Allan	
Depth	100.00 %	6		$ \bigvee \sim$	Carrier
			l	<u> </u>	
Source	Shape	ModFreq	Depth		

3. Ustaw parametry fali nośnej

Naciśnij przyciski Carrier>Type>Square (jeśli etykieta Type nie zostanie podświetlona, ponownie naciśnij, aby wybrać), aby wybrać przebieg prostokątny jako falę nośną.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	р	1	n –	Params
Offset	0 mV				
Phase	0.00 °				Return
DutyCycle	e 50.00 %				
			, 'L	ļ	
Sine	Square	Ramp	Pulse	Arb	
\sim		\sim		\sim	

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jako poniżej:

CH1	Limit 50Ω	Off	CH2	Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kl	Hz			
Amp	100 mVp	р		4	N	Params
Offset	0 mV					
Phase	0.00 °			\neg		Return
DutyCycle	e 50.00 %					
				` L	ļ	
Freq	Amp 🗴	Off	set 🖌 F	Phase	Duty Cycle	

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off	СН	2 Limit 50Ω	Off	Туре
Freq	10.000,0)00 k⊦	lz			Parame
Amp Offset	200 mV 0 mV	op			100 ₀ .	Faranis
Phase	0.00 °				Jr-	Return
DutyCycle	e 45.00 %					
				νIJ	ՄՄԻ	
Freq 🗴	Amp	Off	set 🗴	Phase	Duty Cycle	

4. Ustaw głębokości modulacji

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić głębokość modulacji.

CH1	Limit 50Ω	Off	СН	2	Limit 50Ω	Off	Туре
Source	Internal						
Shape	Sine				⊿n∏	۱n.	Params
ModFreq	200.000	,000 H	Ηz		allill		
Depth	100.00 %	%		-	√		Carrier
					՝Սլ	UP	
Source	Shape	Mod	Freq	C)epth		

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>Depth, wprowadzić liczbę 80 za pomocą klawiatury numerycznej i nacisnąć przycisk "%", aby zakończyć ustawianie.

5. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony, a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

Widok przebiegu zmodulowanego amplitudo na ekranie oscyloskopu, przedstawia poniższy rysunek:

Modulacja częstotliwości (FM)

W FM modulowany przebieg składa się z fali nośnej i fali modulacyjnej. Częstotliwość fali zmienia się w zależności od zmieniającej się amplitudy fali modulującej. Kanały CH 1 i CH2 generatora mogą być modulowane niezależnie różnymi typami modulacji.

Wybór FM

Naciśnij przyciski Menu>Mod>Type>FM, aby włączyć funkcja FM (Jeśli etykieta Type nie jest podświetlona, naciśnij Type ponownie, aby wybrać). Przy włączonym już FM, generator wyśle modulowany przebieg, zgodnie z aktualnymi ustawieniami modulacji i fali nośnej.

CH1	Limit 50Ω	lod	CH2	Limit 50Ω	Off	Туре
Source	Internal					
Shape	Sine			A 111 k	A HUA	Params
ModFreq	100.000,	000 H	z	ДAMA	<u> (</u> AMA	
FreqDev	1.000,00	0,0 kł	Ηz			Carrier
				YYIYV	WWWV	
AM	FM	PI	M	ASK	FSK	PSK

Wybór fali nośnej

Kształt fali nośnej FM może być: sinusoidalny, prostokątny, piłowy lub arbitralny (z wyjątkiem DC). Domyślnie jest to sinusoida. Po wybraniu FM naciśnij przycisk Carrier, aby uzyskać dostęp do wyboru kształtów fali nośnej.

Ustawianie częstotliwości fali nośnej

Zakresy częstotliwości fali nośnych mogą być różne i zależą od ich kształtu. Domyślnie załączy się częstotliwość 1kHz dla wszystkich funkcji. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość						
	UTG2062A		UTG2025A				
	Wartość minimalna Wartość maksymalna W		Wartość minimalna	Wartość maksymalna			
Sinusoida	1uHz	60MHz	1uHz	25MHz			
Prostokąt	1uHz	25MHz	1uHz	5MHz			
Piła	1uHz	400MHz	1uHz	400kHz			
Arbitralny	1uHz	12MHz	1uHz	5MHz			

Aby ustawić częstotliwość nośną, wybierz najpierw falę nośną, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wybrać parametr lub naciśnij przyciski programowe Param>Freq, wprowadź żądaną wartość częstotliwości oraz wybierz potrzebną jednostkę.

Wybór źródła modulacji

Generator UTG2000A umożliwia wybór wewnętrznego lub zewnętrznego źródła modulacji. Po włączeniu FM źródło modulacji domyślnie będzie wewnętrzne (Internal). Aby to zmienić, najpierw włącz funkcję FM, a następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać źródło, naciśnij przycisk Internal lub External (wewnętrzne lub zewnętrzne).

1. Źródło wewnętrzne modulacji

Po wybraniu źródła wewnętrznego, modulacyjny przebieg może być: sinusoidalny, prostokątny, piłowy, arbitralny i szumowy. Domyślnie jest to sinusoida. Więc po wybraniu AM, domyślnie sygnał modulujący ma kształt sinusoidy. Aby zmodyfikować parametry, najpierw włącz modulację FM, następnie obróć pokrętło wielofunkcyjne lub naciśnij przyciski programowe Params>ModWave, aby wybrać:

- Square (prostokąt): o współczynniku wypełnienia 50%
- UpRamp (piła): o symetrii 100%
- DownRamp (piła): o symetrii 0%
- Arb a(arbitralny): gdy wybrany jest przebieg arbitralny jako przebieg modulujący, kształt fali jest automatycznie próbkowany i ograniczony do 1 kpts.
- Noise (szum): biały szum Gaussowski

2. Źródło zewnętrzne

Po wybraniu zewnętrznego źródła modulacji, niektóre parametry znikną z listy, a fala nośna będzie modulowana przez przebieg zewnętrzny.

Dewiacja częstotliwości modulacji jest tu kontrolowana przez poziom sygnału ± 5V, obecny na zewnętrznym analogowym gnieździe modulacyjnym (Modulation In) na tylnym panelu. Gdy poziom sygnału modulującego jest dodatni, częstotliwość wyjściowa będzie większa niż częstotliwość nośna, gdy poziom sygnału modulującego jest ujemny, częstotliwość wyjściowa będzie mniejsza niż częstotliwość fali nośnej. Zewnętrzny sygnał modulujący o niższym poziomie wywoła mniejszą dewiację. Na przykład, gdy dewiacja częstotliwości na liście parametrów jest ustawiona na 1 kHz a poziom napięcia modulującego wynosi + 5 V, częstotliwość wyjściowa wyniesie: częstotliwości fali nośnej + 1kHz, gdy dewiacja częstotliwość na liście parametrów jest ustawiona na 1 kHz a poziom napięcia modulującego wynesie: częstotliwości fali nośnej - 1kHz.

Ustawianie częstotliwości fali modulującej

Częstotliwość modulacji jest dostępna do ustawienia, kiedy wybierzesz wewnętrzne źródło modulacji. Po wybraniu modulacji FM, domyślna częstotliwość modulacji wynosi 100Hz. Aby to zmienić, włącz modulację FM, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Param>ModWave>ModFreq. Teraz przy pomocy klawiatury numerycznej ustaw potrzebną częstotliwość w zakresie 2mHz ~ 50kHz, na końcu wybierz jednostkę. Jeśli wybrane zostało zewnętrznie źródło modulacji, modulujący przebieg i opcje częstotliwości nie są wyświetlane na liście parametrów. W tym przypadku fala nośna będzie modulowana przez zewnętrzny przebieg o częstotliwości w zakresie 0 Hz ~ 20 kHz.

Ustawianie dewiacji częstotliwości

Dewiacja częstotliwości reprezentuje zmianę częstotliwości nośnej modulowanego przebiegu. Dewiacja częstotliwości FM może być ustawiana od 1 µHz do połowy maksymalnej wartości częstotliwości aktualnej fali nośnej. Domyślnie wynosi 1 kHz. Aby to zmienić, włącz funkcę FM, użyj wielofunkcyjnego pokrętła i przycisków strzałkowych lub naciśnij przyciski Param>ModFreq i klawiatury numerycznej, aby ustawić parametr.

- Gdy częstotliwości fali nośnej ≤ częstotliwości dewiacji. Jeśli ustawisz wartość dewiacji częstotliwości większą niż częstotliwość fali nośnej, generator automatycznie ograniczy dewiację do maksymalnej dopuszczalnej wartości zależnej od częstotliwości fali nośnej.
- Częstotliwości dewiacji + częstotliwość nośna < maksymalna dopuszczalna wartość dla bieżącej częstotliwość fali nośnej. Jeśli ustawisz dewiację częstotliwości na niepoprawną wartość, generator automatycznie ograniczy dewiację do maksymalnej wartości dozwolonej dla aktualnej częstotliwość nośnej.

Przykład

Przede wszystkim włącz tryb racy FM. Następnie ustaw przebieg prostokątny o częstotliwości 2 kHz z wewnętrznego źródła jako sygnał modulujący, oraz wybierz przebieg sinusoidalny o amplitudzie 100 mVpp i częstotliwości 10 kHz jako falę nośną. Dewiację częstotliwości ustaw na 1 kHz, wykonaj następujące kroki:

1. Wybierz funkcji FM

Naciśnij przyciski Menu>Mod>Type>FM (Jeśli etykieta Type się nie podświetli, naciśnj przycisk Type ponownie) aby aktywować funkcję FM.

2. Ustaw parametry modulacji

Gdy FM jest aktywna, użyj wielofunkcyjne pokrętło i przyciski strzałkowe do wykonania potrzebnych nastaw. Możesz także nacisnąć przycisk Param w interfejsie jak powyżej, aby wyświetlić ekran jak poniżej:

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Source	Internal				
Shape	Sine		01111	A 111 A	Params
ModFreq	100.000,	000 Hz		<u> ANNA</u>	
FreqDev	1.000,00	0,0 kHz			Carrier
			¥ I I V	VYYUV	
Source	Shape	ModFreq	FreqDev		

Aby ustawić żądane parametry, naciskaj korespondujące przyciski, a następnie wprowadzaj żądane wartości i wybierz potrzebne jednostki.

CH1	Limit 50Ω	Off CI	H2 Limit 50Ω	Off	Туре
Source Shape	Internal Sine		۸۸	٨	Params
ModFreq FreqDev	2.000,00 1.000,00	0,0 kHz 0,0 kHz		$\gamma \ _{\mathcal{L}}$	Carrier
			V	VV	
Source	Shape	ModFree	FreqDev		

3. Ustaw parametry fali nośnej

Naciśnij przyciski Carrier>Type>Sine (jeśli etykieta Type nie zostanie podświetlona, ponownie naciśnij, aby wybrać), aby wybrać przebieg sinusoidalny jako falę nośną.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jako poniżej:

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	ор	ΑΑ	Α	Params
Offset	0 mV		$= \Lambda \Lambda$	}	
Phase	0.00 °			Mr	Return
			V	VV	
Freq	Amp	Offset	Phase		

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off CI	12 Limit 50Ω	Off	Туре
Freq Amp	10.000,0 100 mVr	00 kHz	٥٨٨	δÂ	Params
Offset	0 mV		1 [] []	$\Lambda \Lambda$	
Phase	0.00 °				Return
			VV	VVV	
Freq	Amp x	Offset	Phase		

4. Ustaw częstotliwości dewiacji

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić częstotliwości dewiacji.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>FreqDev, wprowadzić za pomocą klawiatury numerycznej cyfrę 5 i nacisnąć przycisk "kHz", aby zakończyć ustawianie.

CH1	Limit 50Ω	Off	СН	l 2 Limit 50Ω	Off	Туре
Source Shape	Internal Sine	10 0 k	Hz	۸۸۸	ΛΛ	Params
FreqDev	5.000,00	0,0 K	112			Carrier
				VV	VVV	
μHz	mHz	Н	z	kHz	MHz	Cancel

5. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony, a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

CH1	Limit 50Ω	Mod	СН	l 2 Limit 50Ω	Off	Туре
Source	Interna	I				
Shape	Sine				8.8	Params
ModFreq	2.000,0	00,0 k	Hz		- A A	
FreqDev	5.000,0	00,0 k	Hz		Π Λ,	Carrier
					$\{I, I\}$	
				V V	VVV	
Source	Shape	Mod	IFreq	FreqDev		

Obraz przebiegu zmodulowanego częstotliwościowo na ekranie oscyloskopu, przedstawia poniższy rysunek:

Modulacja fazy PM

Podczas modulacji fazy PM, przebieg składa się z fali nośnej i fali modulującej. Faza fali nośnej zmienia się w zależności od zmieniającej sięamplitudy fali modulującej. CH 1 i CH2 generatora mogą być modulowane niezależnie różnymi typami modulacji.

Wybór PM

Naciśnij przyciski Menu>Mod>Type>PM, aby włączyć funkcję\ PM (jeśli nie jest podświetlona etykieta Type, naciśnij przycisk Type ponownie, aby wybrać). Po włączeniu PM, generator wyśle modulowany przebieg zgodnie z aktualnymi ustawieniami modulacji.

Wybór fali nośnej

Kształt fali nośnej PM może być: sinusoidalny, prostokątny, piłowy lub arbitralny (z wyjątkiem DC). Domyślnie jest to sinusoida. Po wybraniu PM naciśnij przycisk Carrier, aby uzyskać dostęp do wyboru kształtów fali nośnej.

CH1	Limit 50Ω N	/lod CH	12 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	ор	A & A	11 A	Params
Offset	0 mV			<u> </u>	
					Return
			(IVV V	
Sine	Square	Ramp	Pulse	Arb	
\sim	, in the second	\sim	л	\sim	

Ustawianie częstotliwości fali nośnej

Zakresy częstotliwości fali nośnych mogą być różne i zależą od ich kształtu. Domyślnie załączy się częstotliwość 1kHz dla wszystkich funkcji. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość								
	UTG2062A		UTG2025A						
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna					
Sinusoida	1uHz	60MHz	1uHz	25MHz					
Prostokąt	1uHz	25MHz	1uHz	5MHz					
Piła	1uHz	400MHz	1uHz	400kHz					
Arbitralny	1uHz	12MHz	1uHz	5MHz					

Aby ustawić częstotliwość nośną, wybierz najpierw falę nośną, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wybrać parametr lub naciśnij przyciski programowe Param>Freq, wprowadź żądaną wartość częstotliwości oraz wybierz potrzebną jednostkę.

Wybór źródła modulacji

Generator UTG2000A umożliwia wybór wewnętrznego lub zewnętrznego źródło modulacji. Po włączeniu PM źródło modulacji domyślnie będzie wewnętrzne (Internal). Aby to zmienić, najpierw włącz funkcję PM, a następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać, naciśnij przycisk Internal lub External (wewnętrzne lub zewnętrzne).

1. Źródło wewnętrzne modulacji

Po wybraniu źródła wewnętrznego modulacyjny przebieg może być: sinusoidalny, prostokątny, piłowy, arbitralny i szumowy. Domyślnie jest to sinusoida. Więc po wybraniu PM, domyślnie sygnał modulujący ma kształt sinusoidy. Aby zmodyfikować parametry, najpierw włącz modulację FM, następnie obróć pokrętło wielofunkcyjne lub naciśnij przyciski programowe Params>ModWave, aby wybrać:

- · Square (prostokąt): o współczynniku wypełnienia 50%
- UpRamp (piła): o symetrii 100%
- DownRamp (piła): o symetrii 0%
- Arb a (arbitralny): gdy wybrany jest przebieg arbitralny jako przebieg modulujący, kształt fali jest automatycznie próbkowany i ograniczony do 1 kpts.
- Noise (szum): biały szum Gaussowski

2. Źródło zewnętrzne

Po wybraniu zewnętrznego źródła modulacji, niektóre parametry znikną z listy, a fala nośna będzie modulowana przez przebieg zewnętrzny. Dewiacja fazy jest tu kontrolowana przez poziom sygnału ± 5V, obecny na zewnętrznym analogowym gnieździe modulacyjnym (Modulation In) na tylnym panelu. Na przykład, gdy dewiacja fazy jest ustawiona na 180° a poziom zewnętrznego sygnału modulującego wynosi +5V, dewiacja będzie wynosić 180°, dla sygnału zewnętrznego o niższym poziomie, dewiacja będzie mniejsza.

Ustawianie częstotliwości fali modulującej

Częstotliwość modulacji jest dostępna do ustawienia, kiedy wybierasz wewnętrzne źródło modulacji. Gdy funkcja PM jest włączona, domyślna częstotliwość modulacji wynosi 100 Hz. Aby zmienić częstotliwość, włącz funkcję PM, użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski programowe Params>ModFreg, aby wybrać zakresie 2mHz ~ 50kHz. Jeśli wybrane jest zewnętrzne źródło modulacji, niektóre parametry znikną z listy a fala nośna będzie modulowana przez modulacyjny sygnał zewnętrzny o częstotliwości w zakresie 0Hz~20kHz.

Ustawianie dewiacji fazy

Dewiacja fazy reprezentuje zmiany fazy fali nośnej modulowanej. Dewiację fazy PM, można ustawić w zakresie 0° ~ 360°. Wartość domyślna to 180°. Aby to zmienić, użyj pokrętło wielofunkcyjne i przyciski strzałkowe lub naciśnij przyciski Param>PhaseDev.

Przykład

Przede wszystkim włącz tryb pracy PM. Aby ustawić falę modulacyjną jako sinusoidalną o częstotliwości 200 Hz z wewnętrznego źródła modulacji, falę sinusoidalną o amplitudzie 100 mVpp i częstotliwości 900 Hz jako falę nośną i dewiacji fazy 200°, wykonaj kroki jak poniżej:

1. Włącz funkcję PM

Naciśnij przyciski Menu>Mod>Type>PM (jeśli Type nie jest podświetlony, naciśnij ponownie aby wybrać).

2. Ustaw parametry przebiegu modulującego

Przy włączonej funkcji PM użyj wielofunkcyjnego pokrętła i przycisków strzałkowych do wykonania konfiguracji lub naciśnij przycisk Param w interfejsie powyżej, aby wyświetlić ekran jak poniżej:

Aby ustawić żądane parametry, naciskaj korespondujące przyciski, a następnie wprowadzaj żądane wartości i wybierz potrzebne jednostki.

3. Ustaw parametry fali nośnej

Naciśnij przyciski Carrier>Type>Sine (jeśli etykieta Type nie zostanie podświetlona, ponownie naciśnij, aby wybrać), aby wybrać przebieg sinusoidalny jako falę nośną.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	р	8.8.0	AA	Params
Offset	0 mV				
				\mathbb{W}	Return
			IV	VV (
Sine	Square	Ramp	Pulse	Arb	
\sim		\sim	Л	\sim	

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jako poniżej:

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

4. Ustawianie dewiacji fazy

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić dewiację fazy.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>PhaseDev, aby wprowadzić za pomocą klawiatury numerycznej liczbę 200 a następnie nacisnąć przycisk "°", aby zakończyć ustawianie.

5. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony, a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

CH1	Limit 50Ω N	1od CH	Limit 50Ω	Off	Туре
Source	Internal				
Shape	Sine		ለ ለ	8.8.7	Params
ModFreq	200.000,	000 Hz	111		
PhaseDev	200.00 °			4477	Carrier
			_ {\ \ \	\mathbb{N}	
				Ϋ́́Υ	
Source	Shape	ModFreq	PhaseDev		

Obraz przebiegu zmodulowanego fazowo na ekranie oscyloskopu, przedstawia poniższy rysunek:

Kluczowanie amplitudy ASK

Podczas modulacji ASK, amplituda fali nośnej jest odbiciem cyfrowych sygnałów logicznych "0" i "1". Wysokie / niskie poziomy logiczne sygnału modulującego sterują wyjściem sygnałem nośnym zmieniając jego amplitudę. Kanały CH 1 i CH2 generatora mogą być modulowane niezależnie dowolnymi typami modulacji.

Wybór ASK

Naciśnij przyciski Menu>Mod>Type> ASK, aby włączyć funkcję ASK (jeśli nie jest podświetlona etykieta Type, naciśnij przycisk Type ponownie, aby wybrać). Po włączeniu ASK, generator wyśle modulowany przebieg zgodnie z aktualnymi ustawieniami modulacji.

Wybór fali nośnej

Kształt fali nośnej ASK może być: sinusoidalny, prostokątny, piłowy lub przebieg arbitralny (z wyjątkiem DC). Domyślnie jest to sinusoida. Po wybraniu ASK naciśnij przycisk Carrier, aby uzyskać dostęp do wyboru kształtów fali nośnej.

CH1	Limit 50Ω	Mod	CH2	2 Limit 50Ω	Off	Туре
Freq	1.000,0	00,0 k	Hz			
Amp	100 mV	рр		8.0.8.0.8		Params
Offset	0 mV			- 8080)		
Phase	0.00 °			- 10000		Return
				84444		
Sine	Square	Ra	mp	Pulse	Arb	
\sim		^	\sim	Л	\sim	

Ustawianie częstotliwości fali nośnej

Zakresy częstotliwości fali nośnych mogą być różne i zależą od ich kształtu. Domyślnie załączy się częstotliwość 1kHz dla wszystkich funkcji. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość	Częstotliwość							
	UTG2062A		UTG2025A						
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna					
Sinusoida	1uHz	60MHz	1uHz	25MHz					
Prostokąt	1uHz	25MHz	1uHz	5MHz					
Piła	1uHz	400MHz	1uHz	400kHz					
Arbitralny	1uHz	12MHz	1uHz	5MHz					

Aby ustawić częstotliwość nośną, wybierz najpierw falę nośną, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wybrać parametr lub naciśnij przyciski programowe Param>Freq, wprowadź żądaną wartość częstotliwości oraz wybierz potrzebną jednostkę.

Wybór źródła modulacji

Generator UTG2000A umożliwia wybór wewnętrznego lub zewnętrznego źródła modulacji. Po włączeniu ASK, źródło modulacji domyślnie będzie wewnętrzne (Internal). Aby to zmienić, najpierw włącz funkcję ASK, a następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać, naciśnij przycisk Internal lub External (wewnętrzne lub zewnętrzne).

1. Źródło wewnętrzne modulacji

Po wybraniu źródła wewnętrznego modulacyjny przebieg może być: sinusoidalny, prostokątny, piłowy, arbitralny i szumowy. Domyślnie jest to sinusoida. Więc po wybraniu PM , domyślnie sygnał modulujący ma kształt sinusoidy. Aby zmodyfikowć parametry, najpierw włącz modulację FM, następnie obróć pokrętło wielofunkcyjne lub naciśnij przyciski programowe Params>ModWave, aby wybrać Square (prostokąt): o współczynniku wypełnienia 50%

2. Źródło zewnętrzne

Po wybraniu zewnętrznego źródła modulacji, parametry znikną z listy, a fala nośna będzie modulowana przez przebieg zewnętrzny. Opcja Rate nie pojawia się na liście parametrów a fala nośna jest modulowana przez zewnętrzny przebieg. Amplituda wyjściowa ASK jest kontrolowana przez poziom logiczny obecny na zewnętrznym gnieździe modulacji cyfrowej (FSK Trig) na tylnym panelu. Na przykład, gdy sygnał modulacyjny zewnętrzny posiada niski poziom logiczny, amplituda wyjściowa generatora jest ustawioną amplitudą sygnału nośnego; gdy sygnał modulacyjny zewnętrzny posiada wysoki poziom logiczny, amplituda wyjściowa generatora jest mniejsza, niż ustawiona amplituda sygnału nośnego.

Ustawianie prędkości ASK

Opcja ta jest dostępna do skonfigurowania po wybraniu wewnętrznego źródła modulacji. Po włączeniu funkcji ASK, domyślnie ustawiona jest częstotliwość 100 Hz i jest dostępna w zakresie 2mHz ~ 100kHz. Aby zmienić ten parametr, włącz najpierw funkcję ASK, a następnie użyj wielofunkcyjnego pokrętła i przycisków strzałkowych lub naciśnij przyciski Param>Rate, aby przy pomocy klawiatury numerycznej wprowadzić potrzebną wartrość.

Przykład

Przede wszystkim włącz tryb ASK. Następnie aby ustawić sygnał logiczny Rate 300 Hz jako sygnał modulacyjny z wewnętrznego źródła, falę sinusoidalną o amplitudzie 2 Vpp i częstotliwości 15 kHz jako falę nośną, wykonaj następujące czynności:

Uwaga: Sygnał logiczny jest określany przez wewnętrzny generator i możesz zmienić wyłącznie jego częstotliwość, w rzeczywistości częstotliwość ta reprezentuje szybkość, z jaką zmieniają się stany logiczne.

1. Wybierz modulację ASK

Naciśnij przyciski Menu>Mode>Type>ASK (Jeśli Type nie jest podświetlone, naciśnij Type ponownie).

CH1	Limit 50Ω	Off	CH2	Limit 50Ω	Off	Туре
Source	Internal					
Rate	100.000,	000 H	z	11111		Params
				MAN		Carrier
АМ	FM	PM	N	ASK	FSK	PSK

2. Ustaw parametry fali nośnej

Naciśnij przyciski Carrier>Type>Sine (jeśli etykieta Type nie zostanie podświetlona, ponownie naciśnij, aby wybrać), aby wybrać przebieg sinusoidalny jako falę nośną.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jako poniżej:

CH1	Limit 50Ω O	ff CH	2 Limit 50Ω	Off	Туре
Freq	1.000,000	,0 kHz			Params
Offset	0 mV)			
Phase	0.00 °		- '1811/18		Return
			\\\\\\\		
Freq	Amp 🛓	Offset ⊻	Phase		

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off CI	H2 Limit 50Ω	Off	Туре
Freq Amp	15.000,0 2.000 Vp	00 kHz op	88688		Params
Phase	0.00 °				Return
			U V V U V		
Freq 🗴	Amp 🖕	Offset	Phase		

3. Ustaw szybkości Rate ASK

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić częstotliwości Rate.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>Rate, aby wprowadzić za pomocą klawiatury numerycznej liczbę 200 a następnie nacisnąć przycisk "Hz", aby zakończyć ustawianie.

4. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony, a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

Obraz przebiegu zmodulowanego częstotliwościowo na ekranie oscyloskopu, przedstawia poniższy rysunek:

Kluczowanie częstotliwości FSK

Podczas modulacji FSK częstotliwość generatora przesuwa się między dwoma wstępnie ustawionymi częstotliwościami (częstotliwością nośną i częstotliwością skoku). Poziomy logiczne wysoki / niski, określają częstotliwość nośną lub częstotliwość skoków. Kanały CH1 i CH2 generatora można modulować niezależnie różnymi typami modulacji.

Włączanie FSK

Naciśnij przyciski Menu>Mod>Type>FSK (jeśli etykieta type nie jest podświetlona, naciśnij ponownie przycisk Type, aby wybrać), aby włączyć funkcję FSK.

CH1	Limit 50Ω	∕lod	СН2	2 Limit 50Ω	Off	Туре
Source	Internal					
CarrierFre	eq 1.000,00)0,0 k	Hz	\wedge	4.0.4.0.0	Params
HopFreq	10.000,0	000 kł	Ηz		11444	
Rate	100.000	,000 ł	Ηz	$' \setminus /$		Carrier
				V	8 V V V V	
АМ	FM	Р	М	ASK	FSK	PSK

Wybór fali nośnej

Kształt fali nośnej FSK może być: sinusoidalny, prostokątny, piłowy lub arbitralny (z wyjątkiem DC). Domyślnie jest to sinusoida. Po wybraniu FSK naciśnij przycisk Carrier, aby uzyskać dostęp do wyboru kształtów fali nośnej.

CH1	Limit 50Ω N	1od CH	12 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	р	\wedge	6.0.8.0.8	Params
Offset	0 mV		$ \rangle$	46848	
Phase	0.00 °		$ / \rangle /$		Return
			V	8 A A A A A	
Sine	Square	Ramp	Pulse	Arb	
\sim		\sim	<u>л</u>	\sim	

Ustawianie częstotliwości fali nośnej

Zakresy częstotliwości fali nośnych mogą być różne i zależą od ich kształtu. Domyślnie załączy się częstotliwość 1kHz dla wszystkich funkcji. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość				
	UTG2062A		UTG2025A		
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna	
Sinusoida	1uHz	60MHz	1uHz	25MHz	
Prostokąt	1uHz	25MHz	1uHz	5MHz	
Piła	1uHz	400MHz	1uHz	400kHz	
Arbitralny	1uHz	12MHz	1uHz	5MHz	

Aby ustawić częstotliwość nośną, wybierz najpierw falę nośną, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wybrać parametr lub naciśnij przyciski programowe Param>Freq, wprowadź żądaną wartość częstotliwości oraz wybierz potrzebną jednostkę.

Wybór źródła modulacji

Generator UTG2000A umożliwia wybór wewnętrznego lub zewnętrznego źródła modulacji. Po włączeniu ASK źródło modulacji domyślnie będzie wewnętrzne (Internal). Najpierw włącz funkcję FSK, a następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać, naciśnij przycisk Internal lub External (wewnętrzne lub zewnętrzne).

1. Wewnętrzne źródło modulacji

Po wybraniu źródła wewnętrznego, modulacyjny przebieg może być wyłącznie prostokątny o współczynniku wypełnienia 50%.

2. Zewnętrzne źródło modulacji

Po wybraniu zewnętrznego źródła modulującego, opcje parametrów nie pojawia się na liście a fala nośna jest modulowana przez zewnętrzny przebieg. Częstotliwość wyjściowa jest kontrolowana przez poziom logiczny obecny na zewnętrznym gnieździe modulacji cyfrowej (FSK Trig) na tylnym panelu. Kiedy poziom logiczny sygnału modulującego jest niski, częstotliwość fali nośnej jest wyprowadzana; przy wysokim poziomie logicznym, częstotliwość skoku jest wyprowadzana.

Ustawianie częstotliwości skoku

Po włączeniu funkcji FSK częstotliwość skok wynosi domyślnie 10 kHz. Aby to zmienić, włącz FSK, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij Param>HopFreq, aby wybrać. Zakresy częstotliwości skoku zależą od wybranej funkcji, zapoznaj się z poniższą tabelą:

Funkcja	Częstotliwość				
	UTG2062A		UTG2025A		
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna	
Sinusoida	1uHz	60MHz	1uHz	25MHz	
Prostokąt	1uHz	25MHz	1uHz	5MHz	
Piła	1uHz	400MHz	1uHz	400kHz	
Arbitralny	1uHz	12MHz	1uHz	5MHz	

Ustawianie prędkości FSK

Opcja ta jest dostępna do skonfigurowania po wybraniu wewnętrznego źródła modulacji. Po włączeniu funkcji FSK, domyślnie ustawiona jest częstotliwość 100 Hz i jest dostępna w zakresie 2mHz ~ 100kHz. Aby zmienić ten parametr, włącz najpierw funkcję FSK, a następnie użyj wielofunkcyjnego pokrętła i przycisków strzałkowych lub naciśnij przyciski Param>Rate, aby później przy pomocy klawiatury numerycznej wprowadzić potrzebną wartość.

Uwaga: Włącz funkcję FSK przed modyfikacją FSK Rate, naciśnij przyciski Menu>Mod>Type>FSK (Jeśli etykieta Type nie jest wyświetlana, naciśnij przycisk programowy Type ponownie, aby wybrać), aby włączyć tryb FSK.

Przykład

Przede wszystkim włącz tryb FSK. Aby ustawić przebieg sinusoidalny o częstotliwości 2kHz i amplitudzie 1Vpp jako falę nośną, częstotliwość skoku na 800 Hz oraz szybkość przełączania pomiędzy falą nośną a częstotliwością skoku Rate na 200Hz, wykonaj czynności:

1. Włącz FSK

Naciśnij przyciski Menu>Mod>Type>FSK (jeśli etykieta type nie jest podświetlona, naciśnij ponownie przycisk Type, aby wybrać), aby włączyć funkcję FSK.

CH1	Limit 50Ω	Off C	H2 Limit 50Ω	Off	Туре
Source	Internal				
CarrierFre	eq 1.000,00	0,0 kHz	\wedge	6.0.6.0.6	Params
HopFreq	10.000,0	00 kHz		40444	
Rate	100.000,	000 Hz		ANAAN	Carrier
			\vee	4 8 9 9 8	
AM	FM	РM	ASK	FSK	PSK

2. Ustaw parametry fali nośnej

Naciśnij przyciski Carrier>Type>Sine (jeśli etykieta Type nie zostanie podświetlona, ponownie naciśnij, aby wybrać), aby wybrać przebieg sinusoidalny jako falę nośną.

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 m∨p	р	\wedge	4 0 8 0 8	Params
Offset	0 mV		$ \rangle$	46868	
Phase	0.00 °		/		Return
			V	N N N N N N	
Sine	Square	Ramp	Pulse	Arb	
\sim		\sim	<u> </u>	\sim	

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jako poniżej:

CH1	Limit 50Ω	Off Cl	12 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	р	\wedge	4.0.8.0.8	Params
Offset	0 mV			46868	
Phase	0.00 °		$ ' \setminus $		Return
				A A A A A	
Freq	Amp 🗴	Offset	Phase		

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Freq Amp	2.000,00 1.000 Vp	00,0 kHz op	\wedge	ለለለለ	Params
Phase	0.00 °				Return
				() () Y	
Freq	Amp	Offset	Phase		

3. Ustaw szybkość skoku Rate FSK

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić częstotliwości Rate.

Instrukcja obsługi

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>Rate, aby wprowadzić za pomocą klawiatury numerycznej 200 a następnie nacisnąć przycisk Hz, aby zakończyć ustawianie.

4. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

Obraz przebiegu zmodulowanego ASK na ekranie oscyloskopu, przedstawia poniższy rysunek:

Kluczowanie fazy (PSK)

Podczas modulacji PFK możesz skonfigurować generator do zmiany faza wyjściowej między aktualnymi wartościami fazy (fazy fali nośnej i fazy fali modulującej). Wysoki / niski poziom logiczny sygnału modulującego, określa fazę fali nośnej / fazę fali modulującej. CH1 i CH2 Generatora można modulować niezależnie dowolnymi typami modulacji.

Wybór fali nośnej

Kształt fali nośnej PSK może być: sinusoidalny, prostokątny, piłowy lub arbitralny (z wyjątkiem DC). Domyślnie jest to sinusoida. Po wybraniu PSK naciśnij przycisk Carrier, aby uzyskać dostęp do kształtów fali nośnej.

CH1	Limit 50Ω N	Iod CH	2 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	ор	ΛΛ	ΔΔ	Params
Offset	0 mV			$\Lambda \Lambda$	
				$\langle \rangle $	Return
			VV	VV	
Sine	Square	Ramp	Pulse	Arb	
\sim	, c	\sim	Л	\sim	

Ustawianie częstotliwości fali nośnej

Zakresy częstotliwości fali nośnych mogą być różne i zależą od ich kształtu. Domyślnie załączy się częstotliwość 1kHz dla wszystkich funkcji. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość					
	UTG2062A		UTG2025A			
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna		
Sinusoida	1uHz	60MHz	1uHz	25MHz		
Prostokąt	1uHz	25MHz	1uHz	5MHz		
Piła	1uHz	400MHz	1uHz	400kHz		
Arbitralny	1uHz	12MHz	1uHz	5MHz		

Aby ustawić częstotliwość nośną, wybierz najpierw falę nośną, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wybrać parametr lub naciśnij przyciski programowe Param>Freq, wprowadź żądaną wartość częstotliwości oraz wybierz potrzebną jednostkę.

Wybór źródła modulacji

Generator UTG2000A umożliwia wybór wewnętrznego lub zewnętrznego źródła modulacji. Po włączeniu PSK źródło modulacji domyślnie będzie wewnętrzne (Internal). Aby to zmienić, najpierw włącz funkcję PSK, a następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać, naciśnij przycisk Internal lub External (wewnętrzne lub zewnętrzne).

1. Wewnętrzne źródło modulacji

Po wybraniu źródła wewnętrznego modulacyjny przebieg może być wyłącznie prostokątny o współczynniku wypełnienia 50%.

2. Zewnętrzne źródło modulacji

Po wybraniu zewnętrznego źródła modulującego opcje parametrów nie pojawia się na liście a fala nośna jest modulowana przez zewnętrzny przebieg. Faza wyjściowa jest kontrolowana przez poziom logiczny obecny na zewnętrznym gnieździe modulacji cyfrowej (FSK Trig) tylnym panelu. Kiedy poziom logiczny sygnału modulującego jest niski, oryginalna faza fali nośnej jest wyprowadzana; przy wysokim poziomie logicznym, faza fali nośnej jest przesunięta.

Ustawianie szybkości PSK Rate

Opcja ta jest dostępna do skonfigurowania po wybraniu wewnętrznego źródła modulacji. Po włączeniu funkcji PSK, domyślnie ustawiona jest częstotliwość 100 Hz i jest dostępna w zakresie 2mHz ~ 100kHz. Aby zmienić ten parametr, włącz najpierw funkcję PSK, a następnie użyj wielofunkcyjnego pokrętła i przycisków strzałkowych lub naciśnij przyciski Param>Rate, aby przy pomocy klawiatury numerycznej wprowadzić potrzebną wartość.

Ustawianie fazy modulacji

Faza modulacji reprezentuje przesunięcie fazy przebiegu fali nośnej. Rozciąga się od 0° ~ 360° i domyślnie wynosi 180°. Aby to zmienić załącz funkcję PSK a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do konfiguracji. Możesz też nacisnąć przyciski Params>Rate, aby wprowadzić zmiany za pomocą klawiatury numerycznej i zakończyć ustawianie.

Przykład

Przede wszystkim włącz tryb PSK. Następnie aby ustawić sinusoidę o częstotliwości 2kHz i amplitudzie 2Vpp jako falę nośną, oraz PSK Rate na częstotliwość 1kHz jako sygnał modulacyjny fazę z wewnętrznego źródła, wykonaj następujące czynności:
1. Włącz funkcję PSK

Naciśnij przyciski Menu>Mod>Type>PSK (jeśli Type nie jest podświetlony, naciśnij ponownie aby wybrać).

2. Ustaw parametry fali nośnej

Naciśnij przyciski Carrier>Type>Sine (jeśli etykieta Type nie zostanie podświetlona, ponownie naciśnij, aby wybrać), aby wybrać przebieg sinusoidalny jako falę nośną.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jako poniżej:

CH1	Limit 50Ω Off	CH2	Limit 50Ω	Off	Туре
Freq	1.000,000,0	kHz			
Amp	100 m∨pp		ΛΛ	ΑΛ	Params
Offset	0 mV		$\Lambda \Lambda^{-}$	Λ	
			$' \setminus [\setminus]$		Return
			VV	VV	
Freq 🛓	Amp C	offset			

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

3. Ustaw szybkości skoku Rate PSK oraz fazę

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić częstotliwości Rate.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>Rate, aby wprowadzić za pomocą klawiatury numerycznej 1, a następnie nacisnąć przycisk kHz, aby zakończyć ustawianie.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Source	Internal				
Rate	100.000,	000 Hz	ΛΛ	ΑΛ	Params
Phase	180.00 °			$\Lambda \Lambda$	
					Carrier
			VV	VV	
Source	Rate	Phase			

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off	CH2	Limit 50Ω	Off	Туре
Source Rate	Internal 1.000,00	0,0 kH	Iz	ΛΛ	ΛΛ	Params
Fliase	100.00			$' \setminus / \setminus $		Carrier
				V V	V V	
Source	Rate	Pha	se			

4. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony, a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

CH1	Limit 50Ω N	Iod CH	12 Limit 50Ω	Off	Туре
Source Rate	Internal	0,0 kHz	ΛΛ	ΛΛ	Params
Phase	180.00 °			\mathcal{M}	Carrier
			VV	VV	
Source	Rate	Phase			

Obraz przebiegu zmodulowanego PSK na ekranie oscyloskopu, przedstawia poniższy rysunek:

Modulacja szerokości impulsu (PWM)

Podczas PWM, modulowany przebieg składa się z fali nośnej i fali modulującej. Szerokość impulsu fali nośnej zmienia się w zależności od zmieniającej się amplitudy fali modulującej. Kanały CH1 i CH2 można modulować niezależnie za pomocą różnych modulacji.

Wybór PWM

Naciśnij przyciski Menu>Mod>Type>PWM, aby włączyć funkcję PWM (Jeśli etykieta Type nie jest podświetlona, naciśnij przycisk Type ponownie aby przejść do następnego ekranu). Gdy PWM jest już włączona, generator wygeneruje modulowany przebieg zgodnie z aktualnymi ustawieniami modulacji fali i fali nośnej

CH1	Limit 50Ω	Mod	CH2	Limit 50Ω	Off	Туре
Source Shape ModFreq DutyDev	Intern Sine 100.0 20.00	nal 00,000 %	Hz			Params Carrier
PWM						

Wybór przebiegu fali nośnej

Gdy wybrana jest modulacja PWM, można jako falę nośną wybrać tylko przebieg impulsowy. Naciśnij przycisk Carrier, a etykieta Pulse podświetli się automatycznie.

CH1	Limit 50Ω N	lod	CH2	Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 k	Hz			
Amp	100 mVp	р				Params
Offset	0 mV					
Phase	0.00 °					Return
DutyCycle	e 50.00 %					
LeadEdge	1.000,0	μs				
TailEdge	1.000,0	μs				
Sine	Square	Ra	mp	Pulse	Arb	
\sim		^	\sim .	л	\sim	

Ustawianie częstotliwości fali nośnej

Zakres częstotliwość przebiegu impulsowego fali nośnej wynosi 500uHz ~ 25 MHz; domyślnie załączy się 1 kHz. Aby zmienić ten parametr, naciśnij przycisk programowy Carrier, aby wyświetlić odpowiedni interfejs, a następnie użyj uniwersalnego pokrętła i przycisków strzałkowych, aby zakończyć konfigurację, lub naciśnij przyciski programowe Param>Freq, a następnie wprowadź żądane wartość, wybierz też żądaną jednostkę, aby zakończyć ustawianie.

Ustawianie współczynnika wypełnienia

Zakres współczynnika wypełnienia wynosi 0.01%~99.99%, domyślnie załączy się wartość 50%. Aby skonfigurować wartość współczynnika wypełnienia, naciśnij przycisk programowy Currier, aby przejść do odpowiedniego interfejsu, a następnie użyj uniwersalnego pokrętła i przycisków strzałkowych, aby zakończyć konfigurację, lub naciśnij przyciski Param>DutyCycle, a następnie wprowadź żądane wartość, wybierz też żądaną jednostkę, aby zakończyć ustawianie

Wybór źródła modulacji

Generator UTG2000A umożliwia wybór wewnętrznego lub zewnętrznego źródła modulacji. Po włączeniu PWM, źródło modulacji domyślnie będzie wewnętrzne (Internal). Aby to zmienić, najpierw włącz funkcję PWM, następnie użyj pokrętło wielofunkcyjne lub naciśnij przyciski Param>Source, następnie aby wybrać, naciśnij przycisk Internal lub External (wewnętrzne lub zewnętrzne).

Uwaga: Włącz funkcję PWM, zanim wybierzesz źródło sygnału modulującego. Naciśnij przyciski Menu>Moad>Type (Jeśli etykieta Type nie jest podświetlona, naciśnij przycisk Type dwa razy , aby przejść do następnego ekranu), aby włączyć funkcję PWM.

CH1	Limit 50Ω	Mod	CH2	Limit 50Ω	Off	Туре
Source Shape ModFreq DutyDev	Intern Sine 100.0 20.00	nal 100,000 F 1 %	- -			Params Carrier
PWM						

1. Wewnętrzne źródło modulacji

Po wybraniu źródła wewnętrznego, modulacyjny przebieg może być: sinusoidalny, prostokątny, piłowy, arbitralny i szumowy. Domyślnie jest to sinusoida. Więc po wybraniu PWM , domyślnie sygnał modulujący ma kształt sinusoidy. Aby zmodyfikować parametry, najpierw włącz modulację PWM, następnie obróć pokrętło wielofunkcyjne lub naciśnij przyciski programowe Params>ModWave, aby wybrać:

- Square (prostokąt): o współczynniku wypełnienia 50%
- UpRamp (piła): o symetrii 100%
- DownRamp (piła): o symetrii 0%
- Arb (arbitralny): gdy wybrany jest przebieg arbitralny jako przebieg modulujący, kształt fali jest automatycznie próbkowany i ograniczony do 1 kpts.
- Noise (szum): biały szum Gaussowski

2. Zewnętrzne źródło modulacji

Po wybraniu zewnętrznego źródła modulacji, niektóre parametry znikną z listy, a fala nośna będzie modulowana przez przebieg zewnętrzny. Współczynnik wypełnienia impulsu jest tu kontrolowany przez poziom sygnału ± 5V, obecny na zewnętrznym analogowym gnieździe modulacyjnym (Modulation In) na tylnym panelu. Gdy dewiacja współczynnika wypełnienia jest ustawiona na 15%, a poziom zewnętrznego sygnału modulującego wynosi +5V, współczynnik wypełnienia wzrośnie o 15%, a zmaleje o 15% dla napięcia -5V.

Ustawianie częstotliwości fali modulującej

Po wybraniu źródła wewnętrznego częstotliwość fali modulującej jest dostępna do skonfigurowania. Po włączeniu funkcji PWM, częstotliwość modulowania wynosi domyślnie 100 Hz. Aby to zmienić, włącz interfejs PWM a następnie użyj wielofunkcyjnego pokrętła i przycisków strzałkowych lub naciśnij przyciski Param>ModFreq (do wyboru). Zakres częstotliwości wynosi 2 mHz ~ 50 kHz. Jeśli wybrane jest źródło zewnętrzne, parametry znikną z listy, a modulacja nastąpi przez zewnętrzny przebieg o częstotliwości modulującej 0 Hz ~ 20 kHz.

Ustawianie dewiacji współczynnika wypełnienia

Dewiacja współczynnika wypełnienia reprezentuje zmianę Duty fali nośnej modulowanej. Dewiację można ustawić w zakresie 0% ~ 49,99%. Domyślnie wynosi ona 20%. Aby to zmienić, załącz funkcję PWM, a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param>DutyDev.

* Dewiacja współczynnika wypełnienia reprezentuje jego zmianę w przebiegu modulowanym w stosunku do przebiegu pierwotnego (wyrażoną w procentach).

* Dewiacja nie może przekroczyć wartości bieżącego współczynnika wypełnienia impulsu.

* Dewiacja przebiegu modulującego + dewiacja bieżącej fali nośnej < 99,99%.

* Dewiacja jest ograniczona przez minimalną wartość współczynnika wypełnienia impulsu i minimalnym czasem narastania.

Przykład

Przede wszystkim włącz tryb PWM. Następnie aby ustawić sinusoidę o częstotliwości 1kHz jako sygnał modulujący, przebieg impulsowy o amplitudzie 2Vpp, częstotliwości 10kHz, współczynniku wypełnienia 50%, dla czasu narastania/ opadania 100ns, jako falę nośną, oraz dewiację współczynnika wypełnienia 40%, wykonaj następujące czynności:

1. Włącz funkcję PSK

Naciśnij przyciski Menu>Mod>Type>PSK (jeśli Type nie jest podświetlony, naciśnij ponownie aby wybrać).

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Source	Internal				
Shape	Sine		חחו		Params
ModFreq	100.000,	000 Hz			
DutyDev	20.00 %				Carrier
PWM					

2. Ustaw parametry fali modulującej

Po wybraniu PWM, użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jak poniżej:

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Source Shape ModFreq	Internal Sine 100.000,	000 Hz	1 [] []		Params
DutyDev	20.00 %				Carrier
Source	Shape	ModFreq	DutyDev		

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off	СН	2 Limit 50Ω	Off	Туре
Source Shape	Internal Sine		U -] [] [Params
DutyDev	20.00 %	JU,U KI	HΖ			Carrier
Source	Shape	Mod	Freq	DutyDev		

3. Ustaw parametry fali nośnej

Po wybraniu modulacji PWM, naciśnij przyciski Carrier, aby wyświetlić menu parametrów.

CH1	Limit 50Ω	Off	CH2	Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kH	z			
Amp	100 mVp	р	-		וחחו	Params
Offset	0 mV					
Phase	0.00 °					Return
DutyCycle	e 50.00 %					Notani
LeadEdge	e 1.000,0 j	μs		$\Box \Box$		
TailEdge	1.000,0	μs				
Sine	Square	Ram	р	Pulse	Arb	
\sim		\sim	_	л	\sim	

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby zakończyć konfigurację. Możesz także nacisnąć przycisk Param w interfejsie powyżej, aby wyświetlić ekran jak poniżej:

CH1	Limit 50Ω	Off C	H2 ^{Limit} 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	р	ח ח ר	וחחר	Params
Offset	0 mV				
Phase	0.00 °				Return
DutyCycle	e 50.00 %				Rotarn
LeadEdge	e 1.000,0 j	JS			
TailEdge	ا 1.000,0	us			
Freq	Amp 🚽	Offset	Phase	Duty Cycle	Lead Edge

Aby ustawić żądany parametr, naciśnij korespondujący przycisk, a następnie wprowadź żądaną wartość i wybierz jednostkę zgodnie z wymaganiami.

CH1	Limit 50Ω	Off	CH2	Limit 50Ω	Off	Туре
Freq	10.000	,000 kł	Hz			
Amp	2.000 \	/pp				Params
Offset	0 mV					
Phase	0.00 °					Return
DutyCycle	50.00 %	6				Rotan
LeadEdge	100.0 r	าร				
TailEdge	100.0 r	IS				
Tail Edge						

4. Ustaw dewiację współczynnika wypełnienia

Po zakończeniu konfiguracji fali nośnej naciśnij przycisk Return, aby powrócić do poprzedniej strony, a następnie ustawić dewiację Duty.

Użyj pokrętła wielofunkcyjnego i przycisków strzałkowych do zakończenia konfiguracji. Możesz też nacisnąć przyciski Params>Duty, aby wprowadzić za pomocą klawiatury numerycznej 40, a nstępnie naciśnąć przycisk %, aby zakończyć ustawianie.

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Source Shape	Internal Sine		חחו		Params
ModFreq DutyDev	1.000,00 40	0,0 kHz			Carrier
%	10%	20%	30%	50%	Cancel

5. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby aktywować kanał, lub można nacisnąć przyciski Utility>CH1 Setting>Output>On. Przycisk CH1 zostanie podświetlony, a ikona "Off" zmieni się na On wskazując, że wyjście CH1 zostało włączone.

CH1	Limit 50Ω	Mod	СН	2	₋imit 50Ω	Off	Туре
Source Shape ModFreq	Internal Sine 1.000,0	00,0 k	Hz				Params
DutyDev	40.00 %	, D					Carrier
Source	Shape	Mod	IFreq	Duty	Dev		

Obraz przebiegu zmodulowanego PWM na ekranie oscyloskopu, przedstawia poniższy rysunek:

Generacja przebiegów z przemiataniem częstotliwości

Podczas przemiatania częstotliwości, generator, w określonym czasie przemiatania, porusza się od częstotliwości początkowej do częstotliwość zatrzymania, liniowo lub logarytmicznie. Wewnętrzne, zewnętrzne i ręczne źródło wyzwalania jest tu dostępne do wyboru. Generator może przemiatać przebiegi: sinusoidalne, prostokątne, piłowe i arbitralne. Jego kanały CH1 i CH2 można modulować niezależnie za pomocą dowolnego typu modulacji.

Wybór funkcji przemiatania częstotliwości

1. Włączanie funkcji przemiatania częstotliwości

Naciśnij przyciski Menu>Sweep, aby włączyć funkcję Sweep. Po wybraniu funkcji, generator rozpocznie przemiatanie zgodnie z bieżącymi nastawami.

2. Wybór przebiegu do przemiatania

Po załączeniu funkcji Śweep, naciśnij przycisk Currier, aby wyświetlić menu, jak na rysunku poniżej:

CH1	Limit 50Ω S	weep CH	12 Limit 50Ω	Off	Туре
Amp	100 mV	рр			
Offset	0 mV		Λ Λ	A A*	Params
Phase	0.00 °		$ \rangle \rangle$		
				1 Hi	Return
				$\forall \forall \forall$	
				* • • •	
Cinc	Causes	Dama	٨ بدام		
		Ramp			

Częstotliwość początkowa i częstotliwość końcowa

Określ częstotliwość początkową i końcową oraz górne i dolne granice przemiatania częstotliwości. Przemiatanie zawsze następuje od częstotliwości początkowej do częstotliwości końcowej i powraca. Aby ustawić częstotliwość początkową lub końcową, naciśnij przycisk Return, aby powrócić do interfejsu Sweep i dokończyć konfigurację, a następnie użyj wielofunkcyjne pokrętło i przyciski strzałkowe do wprowadzenia potrzebnych częstotliwości lub naciśnij przycisk Params>StartFreg lub StopFreq, a następnie przy pomocy klawiatury numeryczne wprowadź potrzebne częstotliwości. Na koniec wybierz potrzebną jednostkę.

- Częstotliwość początkowa <częstotliwość końcowa: generator przemiata częstotliwość.
- Częstotliwość początkowa> częstotliwość końcowa: generator przemiata częstotliwość.
- Częstotliwość początkowa = częstotliwość końcowa: generator generuje stałą częstotliwość.

 Sygnał Syn dla trybu Sweep posiada poziom wysoki od punktu początkowego do połowy czasu przemiatania i niski od środkowego punktu do punktu zatrzymania, w którym upływa czas przemiatania.

Domyślnie częstotliwość początkowa wynosi 1kHz, a częstotliwość końcowa 2kHz.

Zakresy częstotliwości przemiatanych mogą być różne i zależą od kształtu przebiegów. Zobacz szczegóły w poniższej tabeli:

Funkcja	Częstotliwość						
	UTG2062A		UTG2025A				
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna			
Sinusoida	1uHz	60MHz	1uHz	25MHz			
Prostokąt	1uHz	25MHz	1uHz	5MHz			
Piła	1uHz	400MHz	1uHz	400kHz			
Arbitralny	1uHz	12MHz	1uHz	5MHz			

Tryby pracy Sweep

W przypadku przemiatania liniowego generator zmienia wyjściową częstotliwość liniowo a podczas przemiatania logarytmicznego generator zmienia wyjściową częstotliwość logarytmicznie. Domyślnie załączy się liniowy sposób przemiatania. Aby to zmienić, naciśnij przycisk Type>Log (Jeśli brak etykiety Log, naciśnij przycisk Return).

CH1	Limit 50Ω Sv	veep	CH2	Limit 50Ω	Off	Туре
StartFreq	1.000,00	00,0 kł	Hz			
StopFreq	2.000,00	00,0 kł	Hz ∣→	₩ <u>_</u>		Params
SwpTime	1.000,00	00,0 s		(\land)		
TrigSrc	Int			[]]		Carrier
TrigOut	Off					
TrigEdge	Rise				$\forall \forall \forall$	
				· · ·	× • •	
Linear	Log					

CH1	Limit 50Ω Sv	veep	CH	2 Limit 50Ω	Off	Туре
StartFreq	1.000,00)0,0 k	Hz			
StopFreq	2.000,00)0,0 k	Hz	→ k <u> </u>		Params
SwpTime	1.000,00)0,0 s		$- \cap - $		
TrigSrc	Int			111	111.	Carrier
TrigOut	Off					
TrigEdge	Rise			\sim V	$\forall \forall \forall \forall$	
				: 0		
Linear	Log					

Czas przemiatania

Jest to czas od rozpoczęcia do zatrzymania przemiatania częstotliwości. Domyślnie ustawiony jest na 1s i jest ustawialny od 1 ms ~ 500s. Aby to zmienić, włącz interfejs Sweep, a następnie użyj wielofunkcyjne pokrętło i przyciski strzałkowe do konfiguracji lub naciśnij przycisk Param>Time, aby następnie użyć klawiatury numerycznej do wprowadzenia potrzebnej wartości. Na koniec wybierz jednostkę.

CH1	Limit 50Ω Sv	veep	CH2	Limit 50Ω	Off	Туре
StartFreq	1.000,00	0,0 kHz	z			
StopFreq	2.000,00	0,0 kHz	z∣→	\leftarrow	δ. α.	Params
SwpTime	1.000,00	0,0 s		/		
TrigSrc	Int				}][][Carrier
TrigOut	Off			-1		
TrigEdge	Rise			\sim	$\vee \vee \vee$	
StartFreq	StopFreq	SwpTi	me T	rigSrc	TrigOut	TrigEdge

Źródło wyzwalania

Po otrzymaniu sygnału wyzwalającego generator wykona jedno przemiatanie, a następnie oczekuje na następny sygnał wyzwalający. Dostępne są wewnętrzne, zewnętrzne lub ręczne źródła wyzwalania dla twojej opcji. Aby wybrać potrzebne źródło wyzwalania, włącz interfejs Sweep, a następnie użyj wielofunkcyjne pokrętło do wyboru źródła, lub naciśnij przycisk Param>TrigSrc, aby wybrać Internal, External lub Manual.

- 1. Po wybraniu wyzwalania wewnętrznego, generator generuje ciągły przebieg w tempie określonym przez czas przemiatania.
- Generator zaakceptuje zastosowany sygnał wyzwalania sprzętowy zewnętrzny doprowadzony do gniazda modulacji cyfrowej (FSK Trig). Za każdym razem, gdy generator otrzymuje spolaryzowany impuls TTL, wykona pojedyncze przemiatanie.

Uwaga: kiedy wybierz zewnętrzne źródło wyzwalania, opcję wyzwalania nie pojawią się na liście parametrów, ponieważ sygnał wyzwalający doprowadzony jest do złącza FSK Trig, które nie może być używane jednocześnie jako zewnętrzne wejście i wyjście wyzwalające.

3. Po wybraniu ręcznego wyzwalania, generator generuje jeden przebieg za każdym razem, gdy przycisk Trigger zostanie naciśnięty. Przycisk Trigger jest aktywny gdy miga.

Wyjściowy sygnał wyzwalania

Gdy wybrane jest wewnętrzne lub ręczne źródło wyzwalania, generator generuje sygnały zgodne z poziomem TTL (przebieg prostokątny). Wyjście wyzwalające jest domyślnie "wyłączone". Aby je włączyć, włącz interfejs przemiatania, następnie użyj wielofunkcyjnego pokrętła lub naciśnij przycisk Param>TrigOut, następnie wybierz "On", aby zakończyć konfigurację.

• Po wybraniu wyzwalacza wewnętrznego, generator generuje sygnał wyzwalający o współczynniku wypełnienia 50% i wyspecyfikowanym okresie, przez złącze modulacji cyfrowej (FSK Trig).

- Po wybraniu wyzwalania ręcznego, generator wyprowadza impuls o szerokości impulsu > 1 us przez zewnętrzne złącze modulacji cyfrowej (FSK Trig) na początku przemiatania.
- Po wybraniu zewnętrznego wyzwalania, opcje wyzwalania nie pojawią się na liście parametrów, ponieważ Trigger Out jest z zewnętrznego źródła, poprzez złącze modulacji cyfrowej (FSK Trig).

Zbocze wyzwalania

Niezależnie od tego, czy gniazdo modulacji cyfrowej używane jest jako wejście lub wyjście, zbocze wyzwalania może być wyspecyfikowane w obu przypadkach. Gdy wybrane jest zewnętrzne źródło wyzwalania, "Rise" oznacza, że wyzwalanie następuje na zboczu narastającym zewnętrznego sygnału, a "Fall" wskazuje na wyzwolenie generatora na opadającym zboczu sygnału zewnętrznego. Gdy wybrane jest wewnętrzne lub ręczne źródło wyzwalania, gniazdo Trigger Out jest włączone a "Rise" oznacza że wyprowadzany jest sygnał wyzwalający na zboczu narastającym, a "Fall oznacza że wyprowadzany jest sygnał wyzwalający na zboczu narastającym, a "Fall oznacza że wyprowadzany jest sygnał wyzwalający na zboczu narastające, Rise. Aby to zmienić użyj pokrętła wielofunkcyjnego i przycisków korespondujących TrigEdge, Rise i Fall.

Przykład

Najpierw wybierz funkcję przemiatania Sweep. Następnie aby ustawić przebieg prostokątny o amplitudzie 1Vpp i współczynniku wypełnienia 50% jako przebieg do przemiatania, rodzaj przemiatania liniowy, częstotliwość początkową 1kHz, częstotliwość końcową 50kHz, czas przemiatania 2ms, wyzwalanie na zboczu narastającym ze źródła zewnętrznego wykonaj czynności:

1. Wybierz funkcję przemiatania

Naciśnij przyciski Menu>Sweep>Type>Linear (jeśli Type nie podświetli się, naciśnij ten przycisk ponownie) aby wybrać opcję Linear.

CH1	Limit 50Ω	Off C	H2 ^{Limit} 50Ω	Off	Туре
StartFreq	1.000,00	0,0 kHz			
StopFreq	2.000,00	0,0 kHz	→ K_		Params
SwpTime	1.000,00	0,0 s	/ /	I A A	
TrigSrc	Int				Carrier
TrigOut	Off				
TrigEdge	Rise			$\vee \vee \vee$	
				· · ·	
Linear	Log				

2. Wybierz przebieg do przemiatania

Przy wybranym przemiataniu liniowym, naciśnij przyciski Currier>Square, aby wyświetlić interfejs:

CH1	Limit 50Ω	Off CH	2 Limit 50Ω	Off	Туре
Amp	100 mVp	р			
Offset	0 mV			חחר	Params
Phase	0.00 °				
DutyCycle	50.00 %			-{`	Return
Sine	Square	Ramp	Arb		
\sim		\sim	\sim		

Teraz użyj wielofunkcyjne pokrętło i przyciski strzałkowe do wprowadzenia amplitudy, lub naciśnij przycisk Params aby otrzymać ekran:

CH1	Limit 50Ω Off	CH2	Limit 50Ω	Off	Туре
Amp Offset	100 mVpp 0 mV				Params
DutyCycle	e 50.00 %				Return
Amp 🛓	Offset ⊻	Phase	Duty Cycle		

Teraz aby wprowadzić potrzebny parametr, naciśnij korespondujący przycisk, wprowadź wartość z klawiatury numerycznej i wybierz wymaganą jednostkę.

CH1	Limit 50Ω	Off CH	l 2 Limit 50Ω	Off	Туре
Amp Offset	+1 0 mV			1 [] A	Params
DutyCycle	e 50.00 %				Return
				UUL	
m∨pp	∨рр	mVrms	Vrms	dBm	Cancel

3. Ustaw częstotliwość start / stop i czasu przemiatania

Źródło wyzwalania i zbocza

Po skonfigurowaniu przebiegu przemiatania i jego parametrów, naciśnij przycisk programowy Return, aby powrócić do następującego interfejsu:

Teraz użyj wielofunkcyjne pokrętło i przyciski strzałkowe do wprowadzenia ustawień, lub naciśnij przycisk Params aby otrzymać ekran:

CH1	Limit 50Ω	Off	CH2	Limit 50Ω	Off	Туре
StartFreq StopFreq	1.000,00 2.000,00	0,0 kl 0,0 kl	Hz →	; 	ח.ף	Params
TrigSrc TrigOut	Int Off	0,0 3				Carrier
TrigEdge	Rise					
StartFreq	StopFreq	SwpT	Time Tr	igSrc	TrigOut	TrigEdge

Teraz aby wprowadzić potrzebne parametry, naciśnij korespondujące przyciski, wprowadź wartość z klawiatury numerycznej i wybierz wymagane jednostki.

CH1	Limit 50Ω	Off	CH	2 Limit 50Ω	Off	Туре
StartFreq StopFreq	1.000,00 50.000,0	00,0 k 000 kF	Hz Hz		<u>, , , , , , , , , , , , , , , , , , , </u>	Params
TrigSrc TrigOut	Int Off	0 1115				Carrier
TrigEdge	Rise				UUL	
StartFreq	StopFreq	Swp	Time	TrigSrc	TrigOut	TrigEdge

4. Aktywuj kanał

Naciśnij przycisk CH1 na panelu przednim, aby aktywować CH 1, lub można nacisnąć przycisk Utility>CH 1 Setting, aby aktywować wyjście. Gdy kanał CH 1 jest aktywny, przycisk CH1 jest podświetlony na zielono a etykieta "Off", a po prawej stronie etykiety podświetlonego CH1, zmienia się na "Sweep" w kolorze żółtym wskazując, że wyjście CH 1 zostało włączone.

Widok przebiegu przemiatanego na ekranie oscyloskopu, wygląda następująco:

Generowanie przebiegów cykli impulsów Burst

Generator może generować cykle przebiegów (o nazwie "Burst"). Wyzwalanie może tu się odbywać ze źródła wewnętrznego, zewnętrznego i ręcznie. Istnieją trzy tryby generacji cykli impulsów: N-cykli, bramkowany i nieskończony. Przebiegi dostępne dla funkcji Burst to: sinusoida, prostokąt, piła, impuls, arbitralny (z wyjątkiem DC) lub szumowy (dotyczy tylko typów bramkowanych). Oba kanały CH 1 i CH2, można modulować niezależnie różnymi typami modulacji (tak samo lub inaczej).

Wybieranie funkcji Burst

1. Włączanie funkcji Burst

Naciśnij przyciski Menu>Burst, aby włączyć funkcję. Generator wygeneruje impulsy zgodnie z bieżącymi ustawieniami.

CH1	Limit 50Ω B	urst CH	2 Limit 50Ω	Off	Туре
TrigSrc	Int				
TrigOut	Off		6 6 6	6	Params
TrigEdge	Rise			[
BstPeriod	10.000 n	ns		Ì	Carrier
StartPhas	e 0.00 °			ł	June
Cycles	1 Cycles		4 4 4 4	V	
N-Cycle	Gated	Infinite			

2. Wybieranie przebiegów różnych trybów generacji Burst

- Tryb N-cykli: obsługuje przebiegi: sinusoidę, prostokąt, piłowy, impulsowy, arbitralny (z wyjątkiem DC).
- Tryb bramkowany: obsługuje przebiegi: sinusoidę, prostokąt, piłowy, impulsowy, arbitralny (z wyjątkiem DC) oraz szumowy.
- Tryb nieskończony: obsługuje przebiegi: sinusoidę, prostokąt, piłowy, impulsowy, arbitralny (z wyjątkiem DC).

Po włączeniu funkcji Burst, naciśnij przycisk programowy Carrier, aby wybrać przebieg w interfejsie jak niżej:

CH1	Limit 50Ω B	urst CH	Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	ор	6.6.6	ß	Params
Offset	0 mV		- NN - N		
			ի դղրող	\┌────	Return
				¥ –	
			V V V	ν	
Sine	Square	Ramp	Pulse	Arb	
\sim		\sim		\sim	

3. Ustawianie częstotliwości przebiegów

W trybach N-cyklowych i bramkowanych częstotliwość przebiegów definiowana jest przez częstotliwość sygnałów Burst. W trybie N-cyki, generowane są cykle impulsów w wyspecyfikowanej ilości. W trybie bramkowanym, generacja występuje wyłącznie podczas wysokiego stanu logicznego sygnału wyzwalania.

Uwaga: Częstotliwość przebiegów różni się od częstotliwości cykli. Częstotliwość cykli jest używana do zdefiniowania interwału pomiędzy cyklami (tylko dla N-cykli). Domyślnie załączy się częstotliwość 1kHz dla wszystkich kształtów przebiegów. Dostępne zakresy częstotliwości przedstawia tabela:

Funkcja	a Częstotliwość							
	UTG2062A		UTG2025A					
	Wartość minimalna	Wartość maksymalna	Wartość minimalna	Wartość maksymalna				
Sinusoida	1uHz	60MHz	1uHz	25MHz				
Prostokąt	1uHz	25MHz	1uHz	5MHz				
Piła	1uHz	400MHz	1uHz	400kHz				
Arbitralny	1uHz	12MHz	1uHz	5MHz				
Impuls	500uHz	25Mhz	500uHz	5Mhz				

Aby ustawić częstotliwość przebiegów, wybierz najpierw kształ przebiegu, a następnie przy pomocy pokrętła wielofunkcyjnego oraz przycisków strzałkowych wprowadź parametr, lub naciśnij przyciski Param>Freq, a następpnie korzystając z klawiatury numerycznej wprowadź potrzebna wartość częstotliwości. Na koniec wybierz odpowiednią jednostkę.

Rodzaje modulacji Burst

Generator UTG2000A może generować trzy typy serii cykli Burst: N-cykli, bramkowane, nieskończone. Domyślnie załączy się typ "N-cykli".

1. Typ "N-cykli"

Włącz funkcję Burst a następnie naciśnij przyciski Type>N-Cycle, aby uzyskać dostęp do trybu N-Cykli (jeśli jesteś w interfejsie wyboru kształtu przebiegu, naciśnij przycisk Return). W trybie N-cykli generator będzie wyprowadzić przebieg o określonej liczbie cykli (serii) za każdym razem, gdy otrzyma impuls wyzwalający. Po wyprowadzeniu określonej liczby cykli, generator się zatrzyma w oczekiwaniu na następny sygnał wyzwalający. Do wyboru masz wewnętrzne, zewnętrzne lub ręczne źródło wyzwalające. Aby wybrać źródło wyzwalania, przejdź do interfejsu typu Burst (patrz rysunek poniżej), a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Param>Source, aby wybrać źródło wyzwalania i zakończyć konfigurację.

Uwaga: Po wybraniu zewnętrznego źródła wyzwalania opcja TrigOut zniknie z listy parametrów, ponieważ Trigger Out jest realizowany przez zewnętrzne gniazdo modulacji cyfrowej (FSK Trig).

2. Typ bramkowany

Włącz funkcję Burst, a następnie naciśnij przyciki Type>Gated, aby uzyskać dostęp do trybu bramkowanego (jeśli jesteś w interfejsie wyboru kształtu przebiegu, naciśnij najpierw przycisk Return). W trybie bramkowanym TrifSrc, TrigOut, TrigEdge, BstPeriod oraz Cykles Count, nie są wyświetlane na liście parametrów, ponieważ wyzwalanie będzie teraz realizowane przez źródło zewnętrzne.

Generator teraz generuje dane wyjściowe na podstawie wyzwalacza sprzętowego stosownie do sygnałów modulacji cyfrowej doprowadzonych do gniazda (FSK Trig) z zewnątrz. Gdy polaryzacja sygnału wejściowego wyzwalania jest dodatnia i przechodzi na wysoki poziom, generator wygeneruje ciągły przebieg; gdy sygnał wejściowy wyzwalania przechodzi na poziom niski, najpierw bieżący cykl fali będzie zakończony, następnie generator zatrzyma się na poziomie odpowiadającym fazie początkowej wybranego przebiegu. Dla przebiegów szumowych, bramkowany sygnał jest traktowany jako fałszywy i generacja zatrzyma się natychmiast. Aby zmienić polaryzację, przejdź do interfejsu trybu bramkowanego (patrz rysunek poniżej), a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Parm>Polarity, aby dokończyć konfigurację.

3. Typ nieskończoność

Włącz funkcję Burst, a następnie naciśnij przyciski\ Type>Infinite, aby uzyskać dostęp do trybu nieskończoność (jeśli jesteś w interfejsie wyboru kształtu przebiegu, naciśnij najpierw przycisk programowy Return). W trybie nieskończoność, nastąpią zmiany na liście parametrów. Teraz nastąpi zwiększenie liczby cykli przebiegów do liczby nieskończonej. Generator po otrzymaniu sygnału wyzwalania, będzie generował przebieg ciągły. Źródło wyzwalania może tu być wewnętrzne, zewnętrzne lub ręczne.

Aby wybrać potrzebne źródło wyzwalania, włącz funkcję Burst i wybierz źródło używając pokrętła wielofunkcyjnego, możesz też to uczynić naciskając przyciski Param>TrigSrc.

Uwaga: Po wybraniu zewnętrznego źródła wyzwalania opcja TrigOut nie pojawia się na liście parametrów, ponieważ Trigger Out jest wykonywany przez sygnał zewnętrzny doprowadzony do gniazda modulacji cyfrowej (FSK Trig) i nie może działać dla wejścia i wyjścia wyzwalania jednocześnie.

CH1	Limit 50Ω	Burst	CH2	Limit 50Ω	Off	Туре
StartPhas	e 0.00 °					
TrigSrc	Int			ала	8 8 8	Params
TrigOut	Off			11 11 11	11111	
TrigEdge	Rise				Carrier	
				VVV	VVV	
N-Cycle	Gated	Infi	nite			

Faza serii impulsów

Faza serii impulsów to faza początkową serii i może wynosić od -360° ~ + 360°. Domyślnie załączy się faza wynosząca 0°. Aby zmodyfikować ten parametr, przejdź do interfejsu typu Burst, a następnie użyj wielofunkcyjne pokrętło i przyciski strzałkowe lub naciśnij przyciski Param>StartPhase, aby dokończyć konfigurację.

- Dla przebiegów sinusoidalnych, prostokątnych, piłowych i impulsowych, 0° reprezentuje punkt, w którym przebieg przecina poziom 0V (lub offset DC) w kierunku do przodu.
- W przypadku arbitralnego przebiegu, 0° jest pierwszym punktem przebiegu zapisanego do pamięci.
- Faza początkowa nie ma wpływu na przebieg szumowy.

Okres cykli Burst

Okres cykli ma zastosowanie tylko w trybie N-Cycli i określa czas od początku jednaj serii do początku następnej serii. Gdy wybrane jest zewnętrzne lub ręczne źródło wyzwalania, okres cykli nie pokazuje się na liście parametrów. Okres cykli można ustawiać w granicach 1µs~500s.

Domyślnie jest ustawiony na 10ms. Aby to zmienić, przejdź do interfejsu trybu N-Cycle (patrz rysunek poniżej), a następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Param>BstPeriod, aby dokończyć konfigurację.

CH1	Limit 50Ω B	urst CH	Limit 50Ω	Off	Туре
TrigSrc	Int				
TrigOut	Off				Params
TrigEdge	Rise		- 88 88		
BstPeriod	10.000 n	ns	– ղղ,,,,,,ղղ,		Carrier
StartPhas	e 0.00 °				Carrier
Cycles	1 Cycles				
N-Cycle	Gated	Infinite			

- Okres Burst>1ms+okres przebiegu x ilość cykli. Okres przebiegu wynosi 1/częstotliwość przebiegu.
- Jeśli okres Burst jest za krótki, generator automatycznie wydłuży go zgodnie z wyspecyfikowaną ilością cykli.

Liczba cykli

W trybie N-cykli, określana jest liczba cykli (serii) przebiegów. Liczbę cykli można ustawić w zakresie 1 ~ 50000 cykli. Wartość domyślna to 1. Aby to zmienić, najpierw ustaw tryb Byrst na "N-cykl", następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych lub naciśnij przyciski Params>Cycles oraz klawiatury numerycznej, aby zdokończyć konfigurację.

- Liczba cykli ≤okres Burst x częstotliwość przebiegów.
- Jeśli ilość cykli przekroczy limit, generator automatycznie zwiększy okres cykli, tak jak aby dostosować się do
 określonej liczby cykli (jednak częstotliwość przebiegów nie ulegnie zmianie).

Źródła wyzwalania

Gdy po otrzymaniu jednego sygnału wyzwalającego wygenerowany zostanie jeden cykl, generacja ustanie a generator będzie oczekiwał na następne wyzwolenie. W trybie pracy Burst źródło sygnału wyzwalającego może być wewnętrzne, zewnętrzne oraz ręczne (manualne).

Aby wybrać źródło wyzwalania, najpierw przejdź do interfejsu Burst, następnie używając pokrętła wielofunkcyjnego wybierz źródło lub naciśnij przyciski Param>TrigSrc, aby zakończyć konfigurację.

1) Gdy wybrane jest wyzwalanie wewnętrzne, częstotliwość określona jest przez okres Burst. Generator może pracować teraz w trybie "N-cykli" lub "nieskończoność".

2) Po wybraniu zewnętrznego źródła wyzwalania, generator zaakceptuje wyzwalanie sprzętowe zewnętrzne doprowadzone do gniazda modulacji cyfrowej (FSK Trig) na tylnym panelu. Za każdym razem, gdy do gniazda zostanie doprowadzony spolaryzowany impuls TTL, generator wygeneruje jeden cykl. Możliwe są teraz trzy tryby pracy N-cykliczny, bramkowany lub nieskończony.

Uwaga: Po wybraniu zewnętrznego źródła wyzwalania, opcja TrigOut jest ignorowana i nie wyświetli się na liście parametrów, ponieważ wyzwalanie będzie realizowane przez zewnętrzne gniazdo modulacji cyfrowej.

3) Po wybraniu ręcznego wyzwalania, generator za każdym razem wyzwoli, gdy przycisk wyzwalania będzie naciśnięty, zostanie wygenerowany jeden cykl Burst. Gdy przycisk wyzwalania jest aktywny miga na zielono. Generator może teraz pracować w trybach "N-Cyklicznym" lub "nieskończonym".

Sygnał wyjściowy wyzwalania

Gdy wybrane jest źródło wewnętrznego lub ręcznego wyzwalania, generator generuje sygnały zgodne z poziomami TTL (przebieg prostokątny). Domyślnie TrigOut jest ustawiony na "Off" (wyłączony). Aby to zmienić, przejdź interfejsu Burst, a następnie użyj pokrętła wielofunkcyjnego lub naciśnij przyciski Param>TrigOut>On, aby dokończyć konfigurację.

- Po wybraniu wyzwalania wewnętrznego, generator generuje falę prostokątną o współczynniku wypełnienia 50% i wyspecyfikowanym okresie, do gniazda modulacji cyfrowej (FSK Trig), po aktywacji funkcji Burst.
- Gdy wybrany jest sposób wyzwalania ręcznego, szerokość wygenerowanego impulsu>1µs.
- Gdy wybrane jest zewnętrzne źródło wyzwalania, opcja TrigOut, nie wyświetli się na liście parametrów, ponieważ wyzwalanie będzie realizowane przez zewnętrzne gniazdo modulacji cyfrowej.

Zbocze wyzwalania

Bez względu na to czy gniazdo modulacji cyfrowej (FSK Trig) jest używane jako wejście lub wyjście wyzwalania, zbocze wyzwalania (Trigger Edge), można określić dla obu sytuacji. Gdy jest używane jako wejście (zewnętrzne źródło wyzwalania), "Rise" oznacza, że generator wyzwoli na zboczu narastającym i wygeneruje jeden cykli impulsów, gdy zaś wybrane jest zbocze opadające "Fall", oznacza to, że generator wyzwoli na zboczu opadającym i wygeneruje jeden cykli impulsów.

W trybie bramkowanym, jeśli polaryzacja jest dodatnia (Pos), wyzwalanie cyklu nastąpi na wysokim poziomie logicznym, jeśli zaś wybrana jest polaryzacja ujemna (Neg), wyzwalanie cyklu nastąpi na niskim poziomie logicznym. Jeśli gniazdo modulacji cyfrowej używane jest jako wejście, "Rise" oznacza, że generator wysyła impulsy wyzwalające na zboczu narastającym, gdy zaś wybrane jest zbocze opadające "Fall", oznacza, że generator wysyła impulsy wyzwalające na zboczu opadającym. Domyślnie załączone jest zbocze narastające. Aby to zmienić, przejdź interfejsu Burst, a następnie użyj pokrętła wielofunkcyjnego lub naciśnij przyciski Param>TrigEdge>Fail, (w trybie bramkowanym, naciśnij przyciski Param>Polarity>Neg), aby dokończ konfigurację.

Przykład

Najpierw aktywuj funkcję Burst. Aby wygenerować przebieg sinusoidalny o amplitudzie 500mVpp, o okresie 5ms, dla opcji N-Cykli, okresie przebiegów Burst 15ms oraz liczbie cykli 2, wykonaj czynności jak niżej:

1. Włącz funkcję Burst

Naciśnij przyciski Menu>Burst>Type>N-Cycle (jeśli etykieta Type nie jest podświetlona, naciśnij ponownie przycisk programowy Type, aby wybrać), aby ustawić tryb Burst typu "N-Cykl".

CH1	Limit 50Ω	Off C	H2 Limit 50Ω	Off	Туре
TrigSrc	Int				
TrigOut	Off		8 8 8	ß	Params
TrigEdge	Rise		88 8		
BstPeriod	10.000 n	าร	ի ղղելուղ		Carrier
StartPhas	e 0.00 °			ll l	
Cycles	1 Cycles		V V V	V	
N-Cycle	Gated	Infinite			

2. Wybierz przebieg nośny dla Burst

Po włączeniu trybu N-cyklu naciśnij przyciski Carrier>Type>Sine, aby ustawić przebieg sinusoidalny jako falę nośną (jeśli etykieta Type nie jest podświetlona, naciśnij przycisk Type ponownie, aby wybrać). Ponieważ domyślnie przebieg jest sinusoidalny, nie ma potrzeby modyfikacji.

CH1	Limit 50Ω	Off CH	12 Limit 50Ω	Off	Туре
Freq	1.000,00	0,0 kHz			
Amp	100 mVp	р	8 8 8	ß	Params
Offset	0 mV		- NN - N	1	
					Return
			עעע	۲. V	
Sine	Square	Ramp	Pulse	Arb	
\sim		\sim	Л	\sim	

Teraz używając pokrętła wielofunkcyjnego oraz przycisków strzałkowych, wprowadź wartość amplitudy.

Uwaga: Jeśli wyświetlana jest tylko opcja częstotliwości to znaczy, że nie ma tu przełączania między częstotliwością a okresem, i aby ustawić okres na 2ms, trzeba okres przeliczyć na częstotliwość : T=1/f czyli 1/2ms = 500Hz i wprowadzić częstotliwość 500 Hz. Możesz też po naciśnięciu przycisków programowych Param>Freq>Freq (drugie naciśnięcie Freq służy do przełączania między częstotliwością a okresem, jeśli taka opcja istnieje). Otrzymasz ekran jak poniżej:

Aby wprowadzić potrzebny parametr, naciśnij korespondujący przycisk i wprowadź przy pomocy klawiatury numerycznej potrzebną wartość. Na końcu wybierz jednostkę.

CH1	Limit 50Ω	Off CH	Limit 50Ω	Off	Туре
Period	5.000,00	0,0 ms			
Amp	500 m∨p	р			Params
Offset	0 mV		- NN NN		
					Return
			VV V	V	
Period	Amp	Offset			

3. Ustaw okres Burst i liczbę cykli

Po zakończeniu konfiguracji przebiegu Burst, naciśnij przycisk programowy Return, aby wróć do interfejsu jak poniżej:

CH1	Limit 50Ω	Off CH	l 2 Limit 50Ω	Off	Туре
TrigSrc	Int				
TrigOut	Off		A A A	ß	Params
TrigEdge	Rise		- N N - N I		
BstPeriod	10.000 n	ns	'''''	\	Carrier
StartPhas	e 0.00 °			\{	
Cycles	1 Cycles		V V V	V	
N-Cycle	Gated	Infinite			

Następnie użyj pokrętła wielofunkcyjnego i przycisków strzałkowych, aby wprowadzić potrzebne ustawienia, lub możesz nacisnąć także przycisk programowy Param, aby wyświetlić interfejs jako następuje:

Aby wprowadzić potrzebny parametr, naciśnij korespondujący przycisk, a następnie przy pomocy klawiatury numerycznej wprowadź potrzebną wartość parametru. Na końcu wybierz odpowiednią jednostkę.

4. Aktywuj kanał wyjściowy

Naciśnij przycisk CH1 na panelu przednim, aby bezpośrednio aktywować wyjście kanału CH1, lub możesz też nacisnąć przycisk Utility>CH1Setting, aby aktywować wyjście. Gdy CH1 jest włączony, CH1 przycisk jest podświetlony, a szara etykieta "Off" po prawej stronie etykiety CH1, zmienia się na żólłtą etykietę "Burst" wskazując, że wyjście CH1 jest aktywne.

Widok cykli przebiegów Burst na oscyloskopie przedstawiono poniżej:

Generacja przebiegów arbitralnych

Istnieje 48 rodzajów standardowych przebiegów arbitralnych przechowywanych w nieulotnej pamięci UTG2000A. Szczegółowe informacje znajdują się w tabeli 4-1. Generator może tworzyć i edytować dowolnie przebiegi za pomocą oprogramowania, oraz odczytać dowolne pliki przebiegu arbitralnego, zapisany w pamięci flash USB, za pomocą portu USB na panelu przednim.

Załączanie funkcji przebiegów arbitralnych

Naciśnij przyciski Menu>Wave>Type>Arb (Jeśli etykieta Type nie jest podświetlona, naciśnij przycisk Type ponownie), aby załączyć funkcję.

CH1	Limit 50Ω		12 Limit 50Ω	\sim	Туре
PlayMode	No				
ArbSel	Sinc.bsv		ļ		Params
Freq	1.000,00	0,0 kHz	ļ		
Amp	100 mVp	р			
Offset	0 mV		ma	Ann	
Phase	0.00 °		, °°≬	N	
			4,096	Points	
Sine	Square	Ramp	Pulse	Arb	Noise
\sim		\sim	Л	\sim	

Tryb pracy punkt po punkcie

Generator UTG2000A jest wyposażony w funkcję przebiegów arbitralnych "punkt po punkcie". W trybie pracy Point-By-Point, generator będzie pracował na częstotliwości wyjściowej 238.4185791015625Hz, bazując na długości fali składającej się z 1,048,576 punktów i próbek częstotliwość co pozwala uniknąć utraty ważnych punkty przebiegów. Domyślnie generator znajduje się pod statusem "Off" (wyłączone). Poprzez współpracę z dostarczonym oprogramowaniem, generator automatycznie interpoluje lub próbkuje punkty, aby wygenerować dowolny przebieg na podstawie stałej długości fali (4,096 punktów) i częstotliwości zdefiniowanej na liście parametrów. Aby zmienić status trybu PlayMode na "On" (załączone), najpierw wybierz funkcję Arb, a następnie użyj pokrętła wielofunkcyjnego lub naciśnij przyciski Param>PlayMode aby przełączyć z "Off" na "On". Część parametrów z listy zniknie.

CH1	Limit 50Ω	\sim	CH2	Limit 50Ω	\sim	Туре
PlayMode	Yes					
ArbSel	Sinc.bsv			ſ		Params
Amp	100 mVp	р		ſ		
Offset	0 mV					
				~~~^A	100000	
				· · · · v V		
				65,536	Points	
Sine	Square	Ran	np F	Pulse	Arb	Noise
$\sim$		$\sim$	~ .	Л	$\sim$	

Uwaga: UTG2025A nie ma funkcji punkt po punkcie. Zamiast tego automatycznie interpoluje lub próbkuje przebiegi arbitralne, bazując na fali o długości 8192 punktów i częstotliwości zdefiniowanej na liście parametrów.

# Wybór przebiegu arbitralnego

Generator UTG2000A, pozwala użytkownikom na generowanie dowolnych przebiegów z pamięci wewnętrznej lub zewnętrznej. Aby wybrać pożądany przebieg arbitralny, najpierw załącz funkcję, a następnie wybierz przebieg używając pokrętła wielofunkcyjnego, lub naciśnij przyciski Param>ArbSel.

Uwaga: Aby wybrać żądany przebieg arbitralny z dysku U, podłącz dysk U do portu USB na panelu przednim, następnie użyj pokrętła uniwersalnego i przycisków strzałkowych lub naciśnij przyciski Param>ArbSel, aby najpierw wybrać typ pamięci, a następnie dowolny przebieg. Generator UTG2062A, obsługuje dowolne pliki o rozszerzeniu * .csv i długość fali mniejsza niż 8K punktów lub o pliki rozszerzeniu * .bsv.

# Tabela 4-1 Lista dostępnych przebiegów arbitralnych

Тур	Nazwa	Тур	Nazwa
Funkcje ogólne	Sin	unkcje trygonometryczne	SinH
	Square		CosH
	Ramp	- - -	CosInt
	NegRamp		Cot
	PPulse		Tan
	NPulse		TanH
	Noise		Asin
	Sinc		ASinH
	Cardiac		Acoc
	EEG		AcosH
	DualTone		Atan
	AbsSine		AtanH
	StairDN	Okna	Boxcar
	Trapezia		Triang
Funkcje matematyczne	ExpFall		Blackman
	ExpRise		ChebWin
	Log		FlattopWin
	Ln		Hammingt
	HaverSine		Hanning
	Lorentz		Kaiser
	Diorentz	orentz grt RB_X2	
	Sqrt		
	ARB_X2		
	Cubic		
	Gauss		
	LogNormal		
	Laplace	]	

# Tworzenie i edycja przebiegów arbitralnych:

UTG2000A jest w stanie tworzyć i edytować dowolne przebiegi za pomocą potężnego oprogramowania analitycznego, proszę zapoznać się z "Instrukcją obsługi oprogramowania UTG2000A"

# Rozdział 5 Rozwiązywanie problemów

Lista prawdopodobnych problemów i sposobów ich rozwiązywania znajduje się poniżej. Wykonaj następujące kroki w celu ich rozwiązania. Jeśli nie jesteś w stanie sam rozwiązać problemów, skontaktuj się z lokalnym dystrybutorem, za nim to zrobisz skorzystaj z funkcji pomocy; naciśnij przycisk "Utility", następnie przyciski "System>System>About

Uwaga. W przypadku problemów z pomiarami należy powrócić do ustawień fabrycznych .

# Brak wyświetlania (czarny ekran)

Jeśli po załączeniu zasilania ekran na wyświetlaczu pozostaje czarny:

- 1. Sprawdź przewód zasilający.
- 2. Upewnij się, że włącznik urządzenia na tylnym panelu jest w pozycji "I".
- 3. Upewnij się, że włącznik urządzenia na przednim panelu pracuje normalnie.
- 4. Dokonaj restartu przyrządu.
- 5. Jeśli nie jesteś w stanie sam rozwiązać problemów, skontaktuj się z lokalnym dystrybutorem.

# Brak sygnału wyjściowego

Po przeprowadzeniu potrzebnych nastaw, przebieg nie jest wysyłany:

- 1. Sprawdź prawidłowość połączenie wtyku BNC do gniazda wyjściowego.
- 2. Sprawdź czy kanały wyjściowe są aktywne.
- 3. Zapisz bieżące ustawienia generatora na dysku U, następnie wznów "domyślne ustawienia fabryczne" i uruchom ponownie urządzenie.
- 4. Jeśli nie jesteś w stanie sam rozwiązać problemów, skontaktuj się z lokalnym dystrybutorem.

# Przyrząd nie rozpoznaje dysku U (Pendrive)

- 1. Sprawdź, czy dysk U działa normalnie.
- 2. Upewnij się, że używany jest dysk Flash U. Przyrząd nie obsługuje dysku twardego.
- 3. Uruchom ponownie urządzenie i włóż ponownie dysk U, aby sprawdzić, czy działa normalnie.
- 4. Jeśli dysk U nadal nie może zostać poprawnie rozpoznany, skontaktuj się ze sprzedawcą lub lokalnym biurem.
### Rozdział 6 Serwisowanie i pomoc

#### Aktualizacja oprogramowania

Użytkownicy produktu aby mieć pewność, że program generatora przebiegów arbitralnych jest najnowszą wersją wydaną przez UNI-T, mogą aktualizować bieżący program generatora przebiegów funkcyjnych / arbitralnych z wbudowanym systemem aktualizacji, po otrzymaniu pakietu aktualizacji programu za pośrednictwem Działu Sprzedaży lub strony internetowej UNI-T,

- 1. Włącz generator arbitralny UTG2000A i sprawdź wersję modelu, sprzętu i oprogramowania, naciskając kolejno przyciski programowe Utility>System>System>About.
- 2. Pobierz plik programu i plik pomocniczy aktualizacji modelu taki sam jak plik generatora, który ma zostać zaktualizowany i zaktualizuj zgodnie z instrukcjami w pliku pomocniczym. Upewnij się, że pobrane pliki mają ten sam numer co generator, który ma zostać zaktualizowany. Postępuj zgodnie z instrukcjami aktualizacji, aby zaktualizować swój generator.

Instrukcja obsługi

# PL

# Dodatek A: Ustawienia fabryczne

Parametry kanałów			
Fala nośna	Sinusoida	Impedancja	50 om
Impulsy synchronizacji	CH1	CH1/CH2 wyjście	Wyłączone
Przebieg odwrócony	Wyłączony	Limit wyjścia	Wyłączony
Górny limit napięcia	+5V	Dolny limit napięcia	-5V
Podstawowe przebiegi			
Częstotliwość	1KHz	Amplituda	100mVpp
Offset DC	0mV	Faza początkowa	O st
Współczynnik wyp. prostokąta	50%	Symetria rampy	100%
Współczynnik wyp. impulsu	50%	Czas narastania	1us
Czas opadania	1us		
Przebieg arbitralny			
Wbudowane	Sinc	Play Mode	Wyłączony
AM			
Źródło modulacji	Wewnętrzne	Kształt przebiegu	Sinusoida
Częstotliwość	100Hz	Głębokość modul.	100%
FM			
Źródło modulacji	Wewnętrzne	Kształt przebiegu	Sinusoida
Częstotliwość	100Hz	Częstotliwość dewiacji	1kHz
PM			
Źródło modulacji	Wewnętrzne	Kształt przebiegu	Sinusoida
Częstotliwość	100Hz	Faza dewiacji	180 st

i			
PWM	<u>.</u>		
Źródło modulacji	Wewnętrzne	Kształt przebiegu	Impuls
Częstotliwość	100Hz	Wsp. wypełnienia	20%
ASK			
Źródło modulacji	Wewnętrzne	Szybkość Rate ASK	100Hz
FSK			
Źródło modulacji	Wewnętrzne	Szybkość Rate FSK	100Hz
Częstotliwość skoku	10kHz		
PSK	·		
Źródło modulacji	Wewnętrzne	Szybkość Rate PSK	100Hz
Faza	180 st		
Pzemiatanie			
Rodzaj	Liniowe	Częstotliwość startu	1kHz
Częstotliwość stopu	2kHz	Czas przemiatania	1s
Źródło wyzwalania	Liniowe	Wyjście wyzwalania	Wyłączone
Zbocze wyzwalania	Narastające		
Burst			
Tryb	N-Cykli	Faza początkowa	0 st
Okres	10ms	Liczba cykli	1
Polaryzacja	Dodatnia	Źródło wyzwalania	Wewnętrzne
Wyjście wyzwalania	Wyłączone	Zbocze wyzwalania	Narastające
	Ŷ		
Parametry systemowe			
Тур ІР	DHCP	Źródło zegara	Wewnętrzne
Zegar wyjściowy	Wyłączony	Dźwięk	Włączony
Separator	"."	Podświetlenie	100%
Język	Angielski		

# Dodatek B: Specyfikacja techniczna

Model	UTG2062A	UTG2025A
Liczba kanałów	Dwa	Dwa
Max. częstotliwość	60MHz	25MHz
Próbkowanie	250MSa/s	125MSa/s
Przebiegi	Sinusoida, prostokąt, piła, impuls, szu	m, DC, arbitralny
Tryby pracy	Bramkowany, ciągły, modulowany, przemiatanie, cykliczny	
Rodzaje modulacji	AM, FM, PM, ASK, FSK, PSK, PWM	
Charakterystyki przebiegów		
Sinusoida		
Zakres częstotliwości	1µHz~60MHz	1µHz~25MHz
Rozdzielczość	1µHz	
Dokładność	90 dni: +_50ppm, 1 rok:+_100ppm (18ºC~28ºC)	
Zniekształcenia harmoniczne dla 0dBm poziomu wyjściowego	DC~20kHz: -70dBc 20kHz~100kHz: -65dBc 100kHz~1MHz: -50dBc 1MHz~20MHz: -40dBc 20MHz~60MHz: -35dBc	DC~100kHz: -60dBc 100kHz~1MHz: -50dBc 1MHz~25MHz: -35dBc
Całkowite zniekształcenia harmonicz.	DC~20kHz: 1Vpp<0.2%	
Poziom szumów	DC~10MHz: -70dBc, <-70dBc 10Mhz~60Mhz<-70dBc+6dB/oktawę	DC~1MHz: -70dBc, <-70dBc 1Mhz~5Mhz<-40dBc 5Mhz~25Mhz<-50dBc
Szum fazowy	1kHz offset:-105dBc/Hz 10kHz offset:-115dBc/Hz 100kHz offset:-125dBc/Hz	
Prostokąt		
Zakres częstotliwości	1µHz~25MHz	1µHz~5MHz
Rozdzielczość	1µHz	
Czas narastania/opadania	<13ns (typowo, 1kHz, 1Vpp)	<24ns (typowo, 1kHz, 1Vpp)
Przesterowanie	2%	

Symetria < 50% Duty	1% okresu+4ns		
Drgania (typowo)	1ns+100ppm okresu		
Piła			
Zakres częstotliwości	1µHz~400Khz		
Rozdzielczość	1µHz	1µHz	
Nieliniowość	<0.1% wartości pik (typowo, 1kHz, 1∖	/pp, 100% symetrii)	
Symetria	0.0%~100%		
Impuls			
Zakres częstotliwości	500µHz~25MHz	500µHz~5MHz	
Rozdzielczość	1µHz		
Szerokość	20ns~2000s	40ns~2000s	
Zmienność zbocza	12ns~2ms	20ns~2ms (typowo24ns)	
Przesterowanie	<2%		
Drgania	1ns+100ppm okresu		
Szum Gaussiana			
Pasmo	60MHz(-3dB), typowo	25MHz(-3dB), typowo	
Offset DC			
Zakres AC+DC	±5V (50om), ±10V (impedancja wysoka),		
Dokładność offsetu	±[(1% ustawionego offsetu)+0.5% amplitudy+5mV]		
Charakterystyki przebiegów arbitralnych			
Zakres częstotliwości	1µHz~12MHz	1µHz~5MHz	
Rozdzielczość	1µHz		
Długość przebiegu	2~1M punktów	2~8k punktów	
Rozdzielczość pionowa	14bitów		
Szybkość próbkowania	250MSa/s	125MSa/s	
Mini. czas narastania/opadania	35ns, (typowo)		
Drgania (RMS)	6ns+30ppm	15ns+100ppm	
Pamięć nieulotna	48 przebiegów		
Ogólna charakterystyka wyjściowa			
Zakeras amplitudy	0~10MHz: 1mVpp~10Vpp, 10MHz~60MHz: 1mVpp~5Vpp(50om)		

Zakres amplitudy (cd.)	0~10MHz: 2mVpp~20Vpp, 10MHz~60MHz: 2mVpp~10Vpp (dla wysokiej impedancji)	
Dokładność	+-(1% ustawienia+2mVpp) (1kHz, sinusoida)	
Płaskość amplitudy (w odniesieniu do	<200kHz 0.1dB <200kHz~60MHz 0.2dB	<100kHz 0.1dB <100kHz~25MHz_0.2dB
Charakterystyka wyjściowa przebie		
Impedancia	500 (typowo)	
Izolacia	Maksymaknie 42k\/nk względem z	iemi
Zaheznieczenie	Przeciwzwarciowe gniazd wyjścio	wych BNC na przednim papelu
Rodzaje modulacij	Trzeciwzwarciowe, griazu wyjscio	
Przehiegi fali nośnej	Sinusoida prostokat piła arbitralr	NV.
Źródła modulacii	Wewnetrzne zewnetrzne	'y
Przebiegi modulujące	Viewnętrzne, żewnętrzne	
Częstotliwość mod	Sinusoida, prostokąt, piła, szumowy, arbitrainy	
Głebokość modulacij	211112~30KHZ	
Przebiegi fali nośnej	Sinusoida prostokat piła arbitraln	NV.
	Wewpetrzne zewpetrzne	ly
	Sinusoida prostokat piła szumowy arbitralny	
Częstotliwość mod	2mHz~50kHz	
PM		
r IVI Przebiegi fali pośnej	Sinusoida prostokat piła arbitraln	
	Wewpetrzne, zewpetrzne	
	Sinusoida prostokat piła szumowy arbitralny	
	Sinusoida, prostokąt, pira, szumowy, arbitramy	
Dewiacia fazy		
	0.380	
ASK Przebiogi feli pośnej	Sinuncido prostokat pilo arbitrala	
	Sinusoida, prostokąt, piła, arditralny	
	vvewnętrzne, zewnętrzne	
	Prostokątny, o wspołczynniku wyp	
Dewiacja częstotliw.	11µHz~30MHz	1µHz~12.5MHz

Częstotliwość mod.	2mHz~100kHz	
FSK		
Przebiegi fali nośnej	Sinusoida, prostokąt, piła, arbitralny	
Źródła modulacji	Wewnętrzne, zewnętrzne	
Przebiegi modulujące	Prostokątny, o współczynniku wypełnie	enia 50%
Częstotliwość mod.	2mHz~100kHz	
PWM		
Przebieg fali nośnej	Impulsowy	
Źródła modulacji	Wewnętrzne, zewnętrzne	
Przebiegi modulujące	Sinusoida, prostokąt, piła, szumowy, a	rbitralny
Częstotliwość mod.	2mHz~50kHz	
Dewiacja szerokości	0%~49.9% szerokości impulsu	
Przemiatanie		
Przebiegi fali nośnej	Sinusoida, prostokąt, piła, arbitralny	
Tryby pracy	Liniowy, logarytmiczny	
Zakres czasów	1ms~500s=±0.1%	
Źródła wyzwalania	Wewnętrzne, zewnętrzne, ręczne	
Cykle Burst		
Przebiegi	Sinusoida, prostokąt, piła, impulsowy, szumowy, arbitralny	
Туру	Ciągły, nieskończoność, bramkowany	
Faza początkowa	-360°~+360°	
Zakres czasu przerw	1µs~500s±1%	
Źródło bramkowania	Zewnętrzne	
Źródła wyzwalania	Wewnętrzne, zewnętrzne, ręczne	
Wyjście impulsów synchronizacji		
Poziom wyjściowy	Kompatybilny z TTL	
Częstotliwość	1µHz~60MHz	1µHz~25MHz
Impedancja wyjściowa	50Ω (typowo)	
Sprężenie	DC	
Gniazda panelu tylnego		
Wejście modulacji	±5Vpk o impedancji 20kΩ	

Tolerancja sygnału 10MHz	10MHz+-500Hz, wejście/wyjście
Poziom sygnału 10MHz	Kompatybilny z TTL wejście/wyjście
Impedancja sygnału 10MHz	10Kom(wejście)/50om (wyjście), wejście ze sprzężeniem DC, wyjście ze sprzężeniem AC
Cas zamykania	2s (typowo)
Wyzwalacz zewnętrzny	
Wejście wyzwalania	
Poziom	Kompatybilny z TTL
Zbocze wyzwalania	Narastające/opadające (do wyboru)
Szerokość impulsu	>100ns
Impedancja	>10kΩ, sprzężenie DC
Czas oczekiwania	Sweep<500µs, (typowo)
Wyjście wyzwalania	
Poziom	Kompatybilny z TTL na 50 $\Omega$
Szerokość impulsu	>400ns (typowo)
Impedancja	50Ω (typowo)
Częstotliwość max.	1MHz
Pomiar częstotliwości	
Poziom wejściowy	Kompatybilny z TTL
Zakres częstotliwości	100mHz~200MHz
Dokładność	+-51ppm
Rozdzielczość	6 bitów
Sprzężenie	DC, AC
Specyfikacja ogólna	
Typ wyświetlacza	4.3", TFT kolor LCD
Rozdzielczość	480x272 pikseli
Zasilanie	
Napięcie	100~240VAC, 45~440Hz, CAT II

Pobór mocy	<50W	<40W
Bezpiecznik	2A, zwłoczny T, 250V	
Warunki środowiskowe		
Temperatury	Pracy: 10ºC~+40ºC, przechowywania: -20ºC~+60ºC,	
Metoda chłodzenia	Wentylator	
Wilgotność względna	<+35°C: ≤90% RH, +35°~+40°C: ≤60% RH	
Wysokość npm.	Pracy: do 3000m, przechowywania: do1500m	
Wymiary i masa		
Wymiary	305mmx230mmx93mm,	
Masa	3.10kg (bez opakowania), 4.10kg (z opakowaniem)	

# Dodatek C: Wyposażenie

Model	UTG2000A (dwukanałowy)
Standardowe	Przewód zasilajacy
	Przewód USB
	Przewód BNC (2szt.)
	Instrukcja obsługi
	Płyta CD
Opcjonalne	Przewód LAN (UTG2062A)

## Dodatek D: Konserwacja i mycie

#### Uwagi ogólne

- Nie wystawiaj przyrządu na bezpośrednie działanie promieni słonecznych
- Aby uniknąć uszkodzeń przyrządu nie używaj do mycia żadnych rozpuszczalników.

#### Mycie i konserwacja

- Częstość mycia przyrządu powinna zależeć od warunków pracy i częstości jego użytkowania.
- Przed myciem wyłącz przyrząd z sieci. Mycie przeprowadź miękką lekko wilgotną ściereczką z dodatkiem słabego detergentu. Nigdy nie używaj do mycia substancji aktywnych jak: benzyna, toluen, ksylen, aceton itp.
- Podczas mycia wyświetlacza LCD zachowaj szczególną ostrożność.
- Nigdy nie używaj do mycia żadnych środków chemicznych ani materiałów ściernych.

Ostrzeżenie: Aby uniknąć porażenia prądem elektrycznym lub uszkodzenia przyrządu, upewnij się, że przed użyciem jest kompletnie suchy.

PL

#### Poland Prawidłowe usuwanie produktu (zużyty sprzęt elektryczny i elektroniczny)

Oznaczenie umieszczone na produkcie lub w odnoszących się do niego tekstach wskazuje, że po upływie okresu użytkowania nie należy usuwać z innymi odpadami pochodzącymi z gospodarstw domowych. Aby uniknąć szkodliwego wpływu na środowisko naturalne i zdrowie ludzi wskutek niekontrolowanego usuwania odpadów, prosimy o oddzielenie produktu od innego typu odpadów oraz odpowiedzialny recykling w celu promowania ponownego użycia zasobów materialnych jako stałej praktyki. W celu uzyskania informacji na temat miejsca i sposobu bezpiecznego dla środowiska recyklingu tego produktu użytkownicy w gospodarstwach domowych powinni skontaktować się z punktem sprzedaży detalicznej, w którym dokonali zakupu produktu, lub z organem władz lokalnych. Użytkownicy w firmach powinni skontaktować się ze swoim dostawcą i sprawdzić warunki umowy zakupu. Produktu nie należy usuwać razem z innymi odpadami komercyjnymi.

Wyprodukowano w CHRL dla LECHPOL ELECTRONICS Sp. z o.o. Sp.k., ul. Garwolińska 1, 08-400 Miętne.

# UNI-T

