WP3082ADAM

Instrukcja obsługi

Wersja 1.42A

Shanghai Wellpro Electrical Technology Co., Ltd. www.shwellpro.com

1、 Opis produktu

- Osiem prądowych kanałów wejściowych: DC0 ~ 20mA / DC4 ~ 20mA Standardowy .
- protokół komunikacyjny RS485 MODBUS RTU
- W połączeniu z oprogramowaniem konfiguracyjnym, sterownikiem PLC lub przemysłowym
- panelem dotykowym Dioda LED stanu komunikacji
- . Obwód komunikacyjny przeznaczony do ochrony przed wyładowaniami atmosferycznymi i odporności na zakłócenia Służy
- do zbierania i sterowania sygnałami w zastosowaniach przemysłowych

2 、 Specyfikacja

•	Kanał wejściowy analogowy	8ch
•	Zakres wejścia analogowego	DC0 ~ 20 mA / DC4 ~ 20 mA
•	Dokładność wejścia analogowego	± 0,02 mA
•	Temperatura pracy	- 20 ~ 70 °C
•	Zewnętrzny zasilacz	DC9V ~ 30V / 2W
•	Ochrona izolacji	DC1500V
•	Metoda instalacji	Standardowa szyna ślizgowa DIN lub śruba 125
•	Wymiar	× 73 × 35 mm

Wymiar

3、 Opis interfejsu

AVcc	Wejście zewnętrznego zasilania dodatnie	
AGnd	Wejście zewnętrznego zasilacza ujemne / uziemienie Wejście	
AI_1 +	AI_1 + prądowe kanału 1 dodatnie	
Gnd	Kanał wejściowy prądu ujemny / wspólna masa analogowa Dodatni kanał	
AI_2 +	wejściowy prądu 2	
Gnd	Kanał wejściowy prądu ujemny / wspólna masa analogowa Dodatni kanał	
AI_3 +	wejściowy prądu 3	
Gnd	Kanał wejściowy prądu ujemny / wspólna masa analogowa Dodatni kanał	
AI_4 +	wejściowy prądu 4	
Gnd	Kanał wejściowy prądu ujemny / wspólna masa analogowa Dodatni kanał	
AI_5 +	wejściowy prądu 5	
Gnd	Kanał wejściowy prądu ujemny / wspólna masa analogowa Dodatni kanał	
Al_6 + wejściowy prądu 6		
Gnd Kanał wejścia prądowego ujemny / wspólna masa analogowa Wejście		
AI_7 + prądowe kanału 7 dodatnie		
Gnd Kanał wejściowy prądu ujemny / wspólna masa analogowa Dodatni kanał		
AI_8 +	wejściowy prądu 8	
Gnd	Kanał wejściowy prądu ujemny / wspólna masa analogowa Sygnał RS485	
485B	В-	
485A	Sygnał RS485 A +	

4 、 Schemat zastosowania wejścia analogowego

5 、 Opis komunikacji

5.1 、 Parametry komunikacji: 9600, brak, 8, 1 (ustawienie domyślne)

Parametr	Opis
9600	szybkość transmisji
Żaden	sprawdź trochę
8	bit danych
1	stop bit

5.2 、 Polecenie odczytu danych z wejścia analogowego

Wyślij: 01 03 00 00 00 08 44 0C (przykład / hex)

dane	bajt	opis danych	uwaga
01	1	adres modułu	zakres adresów: 01-FE
03	1	kod funkcji	03-odczyt rejestru gospodarstwa
0000	2	adres rejestru (typ 4X)	0000-początkowy adres rejestru
0008	2	numer rejestracyjny	0008-odczytaj 8 rejestrów
440C	2	Kod kontrolny CRC	Kod kontrolny CRC dla wszystkich danych

dane	bajt	opis danych	uwaga
01	1	adres modułu	zakres adresów: 01-FE
03	1	kod funkcji	03-odczyt rejestru gospodarstwa
10	1	bajt danych	10-odczyt 16 bajtów
09CE	16	czytać dane	09CE - wejście analogowe dane kanału 1
0000			0000-wejście analogowe dane kanału 2
0000			0000-wejście analogowe dane kanału 3
0000			0000-wejście analogowe dane kanału 4
0000			0000-wejście analogowe dane kanału 5
0000			0000-wejście analogowe dane kanału 6
0000			0000-wejście analogowe dane kanału 7
0000			0000-wejście analogowe dane kanału 8
6C5B	2	Kod kontrolny CRC	Kod kontrolny CRC dla wszystkich danych

To polecenie odczytuje bieżące dane wejściowe modułu.

Dane kanału wejścia analogowego 1 to "09CE", po konwersji na dane dziesiętne będą wynosić 2510. Umieść to we wzorze: I = DANE * 20/4095 = 2510 * 20 / 4095≈12,26mA. Prąd innego analogowego kanału wejściowego wynosi 0 mA.

5.3 、 Polecenie do ustawienia adresu modułu

Wysłać : 00 06 00 64 00 01 08 04 (przykład / hex)

data	bajt	opis danych	uwaga
00	1	adres modułu	Adres rozgłoszeniowy 00
06	1	kod funkcji	06-zapis pojedynczego rejestru
0064	2	adres rejestru (typ 4X)	przetrzymującego 0064-modułowy rejestr adresowy
0001	2	zapis danych	0001- adres modułu, zakres: 0001-00FE Kod kontrolny CRC
0804	2	Kod kontrolny CRC	dla wszystkich danych

Otrzymać : 00 06 00 64 00 01 08 04 (przykład / hex)

To polecenie ustawia adres modułu (adres slave) na "01" (ustawienie domyślne). To ustawienie można zapisać po wyłączeniu zasilania. To jest polecenie rozgłoszeniowe. Musi zapewnić, że tylko jeden moduł jest podłączony do modułu głównego. Gdy moduł otrzyma poprawne polecenie, odeśle odpowiedź z powrotem do mastera.

5.4 、 Polecenie do ustawienia parametrów komunikacji

Wysłać : 01 06 00 65 00 02 18 14 (przykład / hex)

dane	bajt	opis danych	uwaga
01	1	adres modułu	zakres adresów: 01-FE
06	1	kod funkcji	06 - zapisz pojedynczy rejestr przetrzymywania
0065	2	adres rejestru (typ 4X)	0065 - rejestr parametrów komunikacji
0002	2	zapis danych	0001-4800, brak, 8, 1 0002-9600, brak, 8,
			1 0003-19200, brak, 8, 1 0004-38400,
			brak, 8, 1 0005-4800, parzyste, 8, 1
			0006-9600, parzyste , 8, 1 0007- 19200,
			Parzysty, 8, 1 0008-38400, Parzysty, 8, 1
			Kod kontrolny CRC dla wszystkich
			danych
1814	2	Kod kontrolny CRC	

Otrzymać : 01 06 00 65 00 02 18 14 (przykład / hex)

To polecenie ustawia parametr komunikacji na "9600, brak, 8, 1" (ustawienie domyślne). To ustawienie można zapisać po wyłączeniu zasilania.

Gdy moduł otrzyma poprawne polecenie, odeśle odpowiedź z powrotem do mastera.

6 、 Opis diody LED ZASILANIE / DANE

- Gdy moduł jest włączony, dioda LED świeci na zielono.
- Gdy moduł jest połączony, dioda LED miga. Gdy moduł otrzyma
- prawidłowe polecenie, dioda LED świeci na zielono.
- Gdy moduł otrzyma niepoprawne polecenie lub polecenie innego modułu, dioda LED świeci na czerwono.

7 、 Opis debugowania komputera

- Zapewniamy oprogramowanie do debugowania do testowania funkcji i ustawiania parametrów. Wykonaj poniższe czynności:
- Podłącz komputer do modułu za pomocą konwertera RS485.
- Podłącz zasilanie DC12V lub DC24V do modułu i włącz zasilanie. Aby uniknąć niepotrzebnych uszkodzeń, przed włączeniem zasilania upewnij się, że dodatnie i ujemne zaciski zasilania są prawidłowo podłączone.
- Otwórz oprogramowanie i wybierz model modułu, pojawi się okno testowania funkcji lub ustawiania parametrów. Ustaw parametry
- komunikacyjne i otwórz port szeregowy.
- Wybierz odpowiednie ustawienie i kliknij przycisk "Odczytaj" lub "Zapisz".

😂 WP3082ADAM	×
Communication	Analog Input
Serial No. COM5 💌	Address 1
Baud Rate 9600 💌	AI_1
Parity Bit None -	AI_2
Stop Bit 1	AI_3
Port Open	AI_4
	AI_5
Serial Send Data	AI_6
	AI 7
Serial Recieve Data	AI 8
Serial Comm Status	
	Read

8 、 Schemat sieci RS485

WELLPRO Module